Compositions of Extended Top-down Tree Transducers

Andreas Maletti

March 30, 2007

Short Introduction

Motivation

- Extended tree transducers are used in machine translation [Knight & Graehl 05, Shieber 04]
- Compositions occur naturally
 - 1. transducers for specific (small) tasks are easier to train
 - 2. small transducers are simpler to understand
 - 3. "component" tree transducers can be reused

Short Introduction

Motivation

- Extended tree transducers are used in machine translation [Knight & Graehl 05, Shieber 04]
- Compositions occur naturally
 - 1. transducers for specific (small) tasks are easier to train
 - 2. small transducers are simpler to understand
 - 3. "component" tree transducers can be reused
- Extended tree transducers are (essentially) as powerful as tree substitution grammars [Knight & Graehl & Hopkins 07]
- Closure under composition of synchronous tree substitution grammar transformations open (since introduction in 80's)

Outline

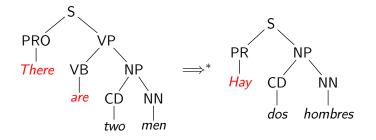
Extended Top-down Tree Transducer

Bimorphism

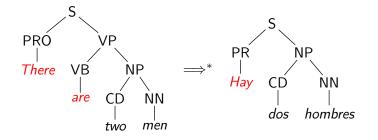
Multi Bottom-up Tree Transducer

Composition

Principal Problem of Top-down Tree Transducers



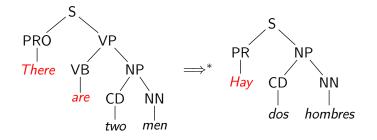
Principal Problem of Top-down Tree Transducers



Notes:

- difficult to implement without regular look-ahead
- solution: use copying

Principal Problem of Top-down Tree Transducers



Notes:

- difficult to implement without regular look-ahead
- solution: use copying No! closure under composition

The new device

Why do we not have multi-level rules?

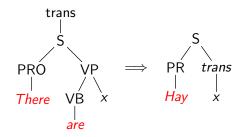
[Knight, Graehl: Training Tree Transducers. HLT-NAACL 2004]

The new device

Why do we not have multi-level rules?

[Knight, Graehl: Training Tree Transducers. HLT-NAACL 2004]

Then we could have rules like



Formal Syntax

Definition (cf. Knight & Graehl 04) An extended top-down tree transducer is a tuple

 $M = (Q, \Sigma, \Delta, S, R)$

- Q a finite set of states
- Σ and Δ input and output ranked alphabet, respectively;
- $S \subseteq Q$ a set of initial states

Formal Syntax

Definition (cf. Knight & Graehl 04) An extended top-down tree transducer is a tuple

 $M = (Q, \Sigma, \Delta, S, R)$

- Q a finite set of states
- Σ and Δ input and output ranked alphabet, respectively;
- $S \subseteq Q$ a set of initial states
- $R \subseteq Q(T_{\Sigma}(X)) \times T_{\Delta}(Q(X))$ a finite set of rules such that

 $\mathsf{var}(r) \subseteq \mathsf{var}(l)$

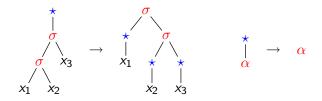
and *I* is linear for every rule $(I, r) \in R$.

An extended top-down tree transducer

Example

- $Q = S = \{\star\};$
- $\Sigma = \Delta = \{\sigma^{(2)}, \alpha^{(0)}\};$
- R contains the rules

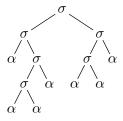
$$\star(\sigma(\sigma(x_1, x_2), x_3)) \to \sigma(\star(x_1), \sigma(\star(x_2), \star(x_3))) \\ \star(\alpha) \to \alpha$$



Example

Rules:

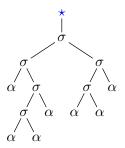
$$\star(\sigma(\sigma(x_1, x_2), x_3)) o \sigma(\star(x_1), \sigma(\star(x_2), \star(x_3))) \ \star(lpha) o lpha$$



Example

Rules:

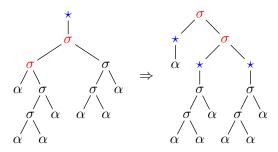
$$\star(\sigma(\sigma(x_1, x_2), x_3)) o \sigma(\star(x_1), \sigma(\star(x_2), \star(x_3))) \ \star(lpha) o lpha$$



Example

Rules:

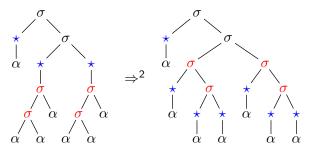
$$\begin{aligned} \star(\sigma(\sigma(x_1,x_2),x_3)) &\to \sigma(\star(x_1),\sigma(\star(x_2),\star(x_3))) \\ \star(\alpha) &\to \alpha \end{aligned}$$



Example

Rules:

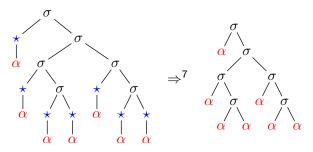
$$\begin{aligned} \star(\sigma(\sigma(x_1,x_2),x_3)) &\to \sigma(\star(x_1),\sigma(\star(x_2),\star(x_3))) \\ \star(\alpha) &\to \alpha \end{aligned}$$



Example

Rules:

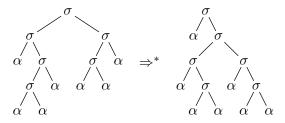
$$\begin{aligned} \star(\sigma(\sigma(x_1,x_2),x_3)) &\to \sigma(\star(x_1),\sigma(\star(x_2),\star(x_3))) \\ \star(\alpha) &\to \alpha \end{aligned}$$



Example

Rules:

$$\star(\sigma(\sigma(x_1, x_2), x_3)) o \sigma(\star(x_1), \sigma(\star(x_2), \star(x_3))) \ \star(lpha) o lpha$$



Definition The tree transformation computed by M is $\tau_M \subseteq T_{\Sigma} \times T_{\Delta}$

$$au_{M} = \{(t, u) \mid q(t) \Rightarrow^{*} u \text{ for some initial state } q\}$$

Notation

 XTOP = class of transf. computed by extended tree transducers

Syntactic Restrictions

Let $M = (Q, \Sigma, \Delta, S, R)$ be an extended tree transducer. **Definition** M is called linear and nondeleting if for every rule $I \rightarrow r$

$$var(l) = var(r)$$

and no variable appears more than once in r.

Example

Our example transducer with rules

$$\star(\sigma(\sigma(x_1,x_2),x_3))
ightarrow \sigma(\star(x_1),\sigma(\star(x_2),\star(x_3))) \ \star(lpha)
ightarrow lpha$$

is linear and nondeleting.

Question

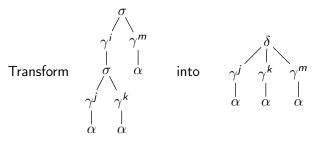
Is the class of transformations computed by linear and nondeleting extended tree transducers closed under composition?

Answer [Knight & Graehl & Hopkins 07]

Question

Is the class of transformations computed by linear and nondeleting extended tree transducers closed under composition?

Answer [Knight & Graehl & Hopkins 07] No!



Two linear and nondeleting extended tree transducers can do that; but a single one cannot.

Open Problems

- Understand linear and nondeleting extended tree transducers better!
- Find subclasses that are closed under composition!
- Identify a suitable superclass that is closed under composition!

Open Problems

- Understand linear and nondeleting extended tree transducers better! (bimorphism)
- ► Find subclasses that are closed under composition! (unsolved)
- Identify a suitable superclass that is closed under composition! (transformations induced by certain bottom-up devices)

Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition

Bimorphism

Let Σ, Δ, Γ be ranked alphabets.

Definition

A bimorphism is a triple (φ, L, ψ) with

- $\varphi: T_{\Gamma} \to T_{\Sigma}$ the input homomorphism;
- $L \subseteq T_{\Gamma}$ the recognizable center;
- $\psi : T_{\Gamma} \to T_{\Delta}$ the output homomorphism.

Definition

Let $B = (\varphi, L, \psi)$ be a bimorphism. The tree transformation computed by B is

$$\tau_B \subseteq T_{\Sigma} \times T_{\Delta}$$

$$\tau_B = \{ (\varphi(s), \psi(s)) \mid s \in L \}$$

Equivalently: $\tau_B = \varphi^{-1} \circ id_L \circ \psi$ (composition of relations)

Illustration

Example

 (φ, L, ψ) bimorphism with

•
$$\Sigma = \Delta = \{\sigma^{(2)}, \alpha^{(0)}\}$$
 and $\Gamma = \{\gamma^{(3)}, \alpha^{(0)}\};$

• $L = T_{\Gamma};$

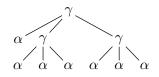
 $\blacktriangleright \ \varphi$ and ψ be the homomorphisms such that

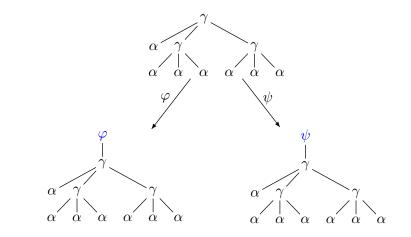
$$\varphi(\gamma) = \sigma(\sigma(x_1, x_2), x_3)$$

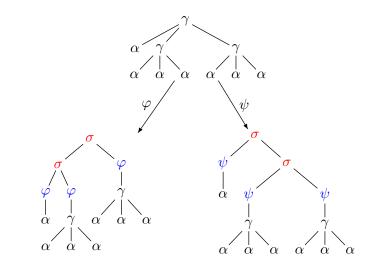
$$\psi(\gamma) = \sigma(x_1, \sigma(x_2, x_3))$$

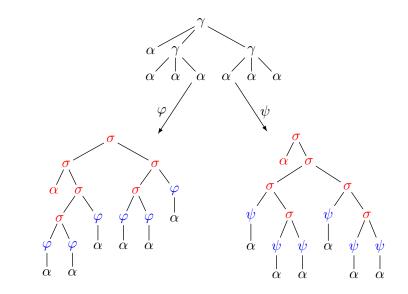
$$\varphi(\alpha) = \alpha$$

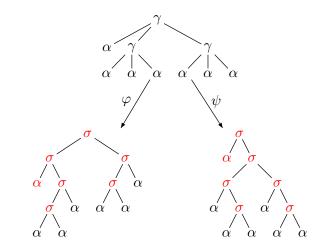
$$\psi(\alpha) = \alpha$$











A Relation

Definition

Homomorphism $h: T_{\Gamma} \to T_{\Sigma}$ is linear and complete if $h(\gamma)$ is linear and nondeleting in X_k for every $k \ge 0$ and $\gamma \in \Gamma^{(k)}$.

Theorem (Knight & Graehl & Hopkins 07, M. 07)

Bimorphisms with linear and complete homomorphisms are as powerful as linear and nondeleting extended tree transducers.

BM(LC, LC) = In-XTOP

A Relation

Definition

Homomorphism $h: T_{\Gamma} \to T_{\Sigma}$ is linear and complete if $h(\gamma)$ is linear and nondeleting in X_k for every $k \ge 0$ and $\gamma \in \Gamma^{(k)}$.

Theorem (Knight & Graehl & Hopkins 07, M. 07) Bimorphisms with linear and complete homomorphisms are as powerful as linear and nondeleting extended tree transducers.

BM(LC, LC) = In-XTOP

Theorem (Arnold & Dauchet 82)

Bimorphisms with linear and complete ε -free homomorphisms are not closed under composition.

 $BM(LCE, LCE) \subset BM(LCE, LCE)^2 = BM(LCE, LCE)^3$

Achievement

We showed that extended tree transducers consist of three (simple) phases:

- an inverse homomorphism (pattern matcher)
- a recognizable restriction (finite control)
- an output homomorphism (interpretation)

Question

- Which device can implement all phases?
- Is the class of transformations computed by the device closed under composition?

Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition

Rules

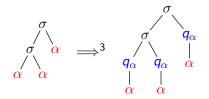
Binary state q_σ and unary final state q_lpha

$$egin{aligned} &lpha o q_lpha(lpha) \ &\sigma(q_lpha(x_1),q_lpha(x_2)) o q_\sigma(x_1,x_2) \ &\sigma(q_\sigma(x_1,x_2),q_lpha(x_3)) o q_lpha(\sigma(x_1,\sigma(x_2,x_3))) \end{aligned}$$

Rules

Binary state q_σ and unary final state q_lpha

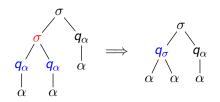
$$egin{aligned} &lpha o q_lpha(lpha) \ &\sigma(q_lpha(x_1),q_lpha(x_2)) o q_\sigma(x_1,x_2) \ &\sigma(q_\sigma(x_1,x_2),q_lpha(x_3)) o q_lpha(\sigma(x_1,\sigma(x_2,x_3))) \end{aligned}$$



Rules

Binary state q_σ and unary final state q_lpha

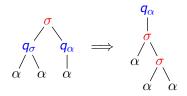
$$egin{aligned} &lpha o q_lpha(lpha) \ &\sigma(q_lpha(x_1),q_lpha(x_2)) o q_\sigma(x_1,x_2) \ &\sigma(q_\sigma(x_1,x_2),q_lpha(x_3)) o q_lpha(\sigma(x_1,\sigma(x_2,x_3))) \end{aligned}$$



Rules

Binary state q_σ and unary final state q_lpha

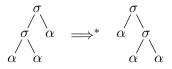
$$egin{aligned} &lpha o q_lpha(lpha) \ &\sigma(q_lpha(x_1),q_lpha(x_2)) o q_\sigma(x_1,x_2) \ &\sigma(q_\sigma(x_1,x_2),q_lpha(x_3)) o q_lpha(\sigma(x_1,\sigma(x_2,x_3))) \end{aligned}$$



Rules

Binary state q_σ and unary final state q_lpha

$$egin{aligned} &lpha o q_lpha(lpha) \ &\sigma(q_lpha(x_1),q_lpha(x_2)) o q_\sigma(x_1,x_2) \ &\sigma(q_\sigma(x_1,x_2),q_lpha(x_3)) o q_lpha(\sigma(x_1,\sigma(x_2,x_3))) \end{aligned}$$



Syntax

Definition (Fülöp & Kühnemann & Vogler 04) A multi bottom-up tree transducer (mbutt) is a tuple

 $M = (Q, \Sigma, \Delta, F, R)$

- Q is a ranked alphabet of states
- Σ and Δ are input and output ranked alphabet, respectively
- $F \subseteq Q^{(1)}$ is a set of final states
- R is a finite set of rules of the form

$$\sigma(q_1(x_{1,1},\ldots,x_{1,n_1}),\ldots,q_k(x_{k,1},\ldots,x_{k,n_k})) \to q(t_1,\ldots,t_n)$$

with $\sigma \in \Sigma^{(k)}$, $q_1, \ldots, q_k \in Q$, and $t_1, \ldots, t_n \in T_{\Delta}(X)$.

Semantics

Definition The tree transformation computed by *M* is

$$au_M \subseteq T_{\Sigma} imes T_{\Delta}$$

 $au_M = \{(t, u) \mid t \Rightarrow^* q(u) \text{ for some } q \in F\}$

$\begin{array}{l} \textbf{Definition} \\ \mathrm{MBOT} = \text{class of transformations computed by mbutt} \end{array}$

Pattern Matching (Phase 1 of 3)

Definition

Let $h: T_{\Gamma} \to T_{\Sigma}$ be a homomorphism. *h* is called ε -free, if $h(\gamma) \notin X$ for every $\gamma \in \Gamma^{(k)}$.

Theorem (M. 07)

The inverse of every ε -free linear and complete homomorphism can be implemented by a linear and nondeleting mbutt

 $\mathsf{lce}\text{-HOM}^{-1} \subseteq \mathsf{ln}\text{-MBOT}$

Proof sketch.

- recognize pattern occurrences by states
- save processed subtrees in parameters

Finite Control (Phase 2 of 3)

Short Recall

The class of recognizable tree languages is the class of languages that are recognized by top-down tree automata (FTA).

Theorem

Every recognizable partial identity can be implemented by a linear and nondeleting mbutt

 $\mathrm{FTA}\subseteq\mathsf{In}\text{-}\mathrm{BOT}\subseteq\mathsf{In}\text{-}\mathrm{MBOT}$

Interpretation (Phase 3 of 3)

Theorem

Every linear and complete homomorphism can be implemented by a linear and nondeleting mbutt

 $\mathsf{lc}\text{-}\mathrm{HOM}\subseteq\mathsf{ln}\text{-}\mathrm{BOT}\subseteq\mathsf{ln}\text{-}\mathrm{MBOT}$

Quest Log

Corollary

All phases (with one small restriction) can be implemented by linear and nondeleting mbutt

 $\mathsf{lce}\text{-}\mathrm{HOM}^{-1}\cup\mathrm{FTA}\cup\mathsf{lc}\text{-}\mathrm{HOM}\subseteq\mathsf{ln}\text{-}\mathrm{MBOT}$

Question

ls

 $\mathsf{lce}\text{-}\mathrm{HOM}^{-1}\circ\mathrm{FTA}\circ\mathsf{lc}\text{-}\mathrm{HOM}\subseteq\mathsf{ln}\text{-}\mathrm{MBOT}$?

Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition

Compositions

Theorem (cf. Kühnemann 06 for deterministic mbutt) The class of transformations computed by linear and nondeleting mbutt is closed under composition

 $\mathsf{In}\text{-}\mathrm{MBOT}^2 = \mathsf{In}\text{-}\mathrm{MBOT}$

Corollary

Linear and nondeleting mbutt are at least as powerful as bimorphisms with linear and complete homomorphisms and an ε -free input homomorphism.

 $BM(LCE, LC) \subseteq In-MBOT$

Are We Too Powerful?

Question

Are linear and nondeleting mbutt too powerful?

Answer No! (see Theorem)

Theorem

Every linear and nondeleting mbutt can be simulated by a composition of a stateful relabeling and a deterministic top-down tree transducer

 $\mathsf{In}\text{-}\mathrm{MBOT}\subseteq \mathrm{QREL}\circ\mathsf{d}\text{-}\mathrm{TOP}$

References

André Arnold and Max Dauchet.

Morphismes et bimorphismes d'arbres. Theor. Comput. Sci., 20:33-93, 1982.

Z. Fülöp, A. Kühnemann, and H. Vogler.

A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inform. Proc. Letters, 91:57–67, 2004.

Jonathan Graehl and Kevin Knight.

Training tree transducers. In Proc. HLT/NAACL, pages 105–112. Association for Computational Linguists, 2004.

Kevin Knight and Jonathan Graehl.

An overview of probabilistic tree transducers for natural language processing. In *Proc. 6th Int. Conf. Comput. Linguistics and Intel. Text Proc.*, volume 3406 of *LNCS*, pages 1–24. Springer, 2005.

Kevin Knight, Jonathan Graehl, and Mark Hopkins.

Extended top-down tree transducers. Manuscript, 2007.

Armin Kühnemann.

Composition of deterministic multi bottom-up tree transducers. Manuscript, 2006.

Stuart M. Shieber.

Synchronous grammars as tree transducers. In Proc. 7th Int. Workshop Tree Adjoining Grammars and Related Formalisms, pages 88–95, 2004.