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Overview

Tree Series

I Assigns a weight to each tree (probabilities will do �ne)

I Weight typically drawn from a semiring; e.g. (R;+; �; 0; 1)

Weighted Tree Automaton

I Computes a tree series

I Finitely represents a tree series



Syntax

De�nition
A weighted tree automaton is a tuple (Q;�;A;F ; �) where

I Q is a �nite set (of states)

I � is a ranked alphabet (of input symbols)

I A = (A;+; �; 0; 1) is a semiring (of weights)

I F � Q (�nal states)

I � = (�k)k2N with �k : �k ! AQ�Qk



Syntax | Illustration

Sample transition: q

�

q1 : : : qk

with weight a

3 6

1 2 4 5

ff

a b a a

Figure: Example automaton.



Semantics

De�nition
Let t 2 T�. A run on t is a map r : pos(t)! Q. The weight of r
is

weight(r) =
Y

w2pos(t)

�k(t(w))r(w);r(w1)���r(wk)

The recognized tree series is

(kMk; t) =
X

r run on t
r(")2F

weight(r)



Semantics | Illustration (without weights)

I Sample input tree: f

a b

I Unsuccessful run: 6

1 2

I Successful run: f

a b
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Semantics | Illustration (without weights)

I Sample input tree: f

a b

I Unsuccessful run: 6

1 2

I Successful run: 3

1 2
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Overview

Application

I Minimize nondeterministic wta

I Minimize unweighted deterministic tree automata

I Very e�cient

Types

I Based on [3]

I Forward: approx. 10% reduction, useful on det. devices

I Backward: approx. 40% reduction



Forward Bisimulation

De�nition
A forward bisimulation R is an equivalence relation such that for
every (p; q) 2 R

I p 2 F if and only if q 2 F

I for every � 2 �k , q1; : : : ; qk 2 Q, i 2 [k], and D 2 Q=R

X

r2D

�k(�)r ;q1���qi�1pqi+1���qk
=
X

r2D

�k(�)r ;q1���qi�1qqi+1���qk

Unweighted Case

If there exists a transition r

�

q1 : : : p : : : qk



Forward Bisimulation

De�nition
A forward bisimulation R is an equivalence relation such that for
every (p; q) 2 R

I p 2 F if and only if q 2 F

I for every � 2 �k , q1; : : : ; qk 2 Q, i 2 [k], and D 2 Q=R

X

r2D

�k(�)r ;q1���qi�1pqi+1���qk
=
X

r2D

�k(�)r ;q1���qi�1qqi+1���qk

Unweighted Case

then there exists r 0 2 [r ] and r 0

�

q1 : : : q : : : qk



Forward Bisimulation Minimization

input: a wta M = (Q;�;A;F ; �);

initially:

P0 := Q2;

R0 := ((Q n F )2 [ F 2) n split(Q);
i := 0;

while Ri 6= Pi:

choose Si 2 Q=Pi and Bi 2 Q=Ri such that

Bi � Si and card(Bi ) � card(Si )=2;

Pi+1 := Pi n cut(Bi );
Ri+1 :=

�
Ri n split(Bi )

�
n split(Si ;Bi );

i := i + 1;

return: the wta M=Ri;

Figure: A minimisation algorithm based on forward bisimulation



Forward Bisimulation

Notes

I E�ective on det. wta

I Very fast O(rm log n)

I Approx. 10% reduction in test set



Backward Bisimulation

De�nition
A backward bisimulation R is an equivalence relation such that for
every (p; q) 2 R

I for every � 2 �k and D1; : : : ;Dk 2 Q=R

X

w2D1���Dk

�k(�)p;w =
X

w2D1���Dk

�k(�)q;w

Unweighted Case

If there exists a transition p

�

q1 : : : qk



Backward Bisimulation

De�nition
A backward bisimulation R is an equivalence relation such that for
every (p; q) 2 R

I for every � 2 �k and D1; : : : ;Dk 2 Q=R

X

w2D1���Dk

�k(�)p;w =
X

w2D1���Dk

�k(�)q;w

Unweighted Case

then there exists p1 2 [q1]; : : : ; pk 2 [qk ] and q

�

p1 : : : pk



Backward Bisimulation

Notes

I Generalization of [1]

I Ine�ective on det. wta

I fast O(r2m log n)

I Approx. 40% reduction in test set

[6] [3]

[1] [2]

ff

a b

Figure: Reduced wta



Results

trees orig. bwd fwd akh fwd, bwd bwd, fwd

58 353 252 286 353 185 180
161 953 576 749 953 378 356
231 1373 781 1075 1373 494 468
287 1726 947 1358 1726 595 563

Table: State set reduction after minimisation

Funny Fact

I Jonathan's implementation (Perl) took < 1 second to run
all tests

I My veri�cation implementation (Haskell) took > 4 hours
for the last example alone
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Deterministic wta

De�nition
Wta is deterministic if for every � 2 �k and w 2 Qk there exists
at most one q 2 Q such that �k(�)q;w 6= 0.

Notes

I Determinization is possible in locally-�nite semirings [2]

I Partial determinization for probabilities [4]



Myhill-Nerode Congruence

De�nition
t � u if there exist a; b 2 A n f0g such that for every context C

a � (kMk;C [t]) = b � (kMk;C [u])

Approach

I Identify dead states (those do not contribute at all)

I Move from trees to states; de�ne congruence on states

I Compute the coarsest equivalence on the states subject to the
above condition



Minimization of deterministic devices

Notes

I No real tests yet!

I Rather e�cient O(rmn4), which can certainly be improved

I My (!!) implementation takes reasonable time on examples
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