Minimizing Weighted Tree Automata

Andreas Maletti

Joint work with Johanna Högberg and Jonathan May

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Table of Contents

Weighted Tree Automata

Bisimulation Minimization

Minimization of Deterministic Devices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table of Contents

Weighted Tree Automata

Bisimulation Minimization

Minimization of Deterministic Devices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview

Tree Series

- Assigns a weight to each tree (probabilities will do fine)
- Weight typically drawn from a semiring; e.g. $(\mathbb{R}, +, \cdot, 0, 1)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weighted Tree Automaton

- Computes a tree series
- Finitely represents a tree series

Syntax

Definition

A weighted tree automaton is a tuple ($Q, \Sigma, \mathcal{A}, \mathcal{F}, \mu$) where

- Q is a finite set (of states)
- Σ is a ranked alphabet (of input symbols)
- $\mathcal{A} = (A, +, \cdot, 0, 1)$ is a semiring (of *weights*)
- $F \subseteq Q$ (final states)
- $\mu = (\mu_k)_{k \in \mathbb{N}}$ with $\mu_k \colon \Sigma_k \to A^{Q \times Q^k}$

Syntax — Illustration

Figure: Example automaton.

Semantics

Definition Let $t \in T_{\Sigma}$. A run on t is a map $r: pos(t) \rightarrow Q$. The weight of r is

$$\mathsf{weight}(r) = \prod_{w \in \mathsf{pos}(t)} \mu_k(t(w))_{r(w), r(w1) \cdots r(wk)}$$

The recognized tree series is

$$(\|M\|, t) = \sum_{\substack{r \text{ run on } t \\ r(\varepsilon) \in F}} weight(r)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Table of Contents

Weighted Tree Automata

Bisimulation Minimization

Minimization of Deterministic Devices

Overview

Application

- Minimize nondeterministic wta
- Minimize unweighted deterministic tree automata
- Very efficient

Types

- Based on [3]
- ▶ Forward: approx. 10% reduction, useful on det. devices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ *Backward:* approx. 40% reduction

Forward Bisimulation

Definition

A forward bisimulation $\mathcal R$ is an equivalence relation such that for every $(p,q)\in \mathcal R$

•
$$p \in F$$
 if and only if $q \in F$

▶ for every $\sigma \in \Sigma_k$, $q_1, \ldots, q_k \in Q$, $i \in [k]$, and $D \in Q/\mathcal{R}$

$$\sum_{r\in D}\mu_k(\sigma)_{r,q_1\cdots q_{i-1}pq_{i+1}\cdots q_k}=\sum_{r\in D}\mu_k(\sigma)_{r,q_1\cdots q_{i-1}qq_{i+1}\cdots q_k}$$

Unweighted Case

If there exists a transition

Forward Bisimulation

Definition

A forward bisimulation $\mathcal R$ is an equivalence relation such that for every $(p, q) \in \mathcal{R}$

•
$$p \in F$$
 if and only if $q \in F$

▶ for every $\sigma \in \Sigma_k$, $q_1, \ldots, q_k \in Q$, $i \in [k]$, and $D \in Q/\mathcal{R}$

$$\sum_{r\in D}\mu_k(\sigma)_{r,q_1\cdots q_{i-1}pq_{i+1}\cdots q_k}=\sum_{r\in D}\mu_k(\sigma)_{r,q_1\cdots q_{i-1}qq_{i+1}\cdots q_k}$$

Unweighted Case then there exists $r' \in [r]$ and

Forward Bisimulation Minimization

```
[input: a wta M = (Q, \Sigma, \mathcal{A}, F, \mu);
_initially:
  egin{array}{lll} \mathcal{P}_0 & := & Q^2 \, ; \ \mathcal{R}_0 & := & ((Q \setminus F)^2 \cup F^2) \setminus \mathrm{split}(Q) \, ; \end{array}
           := 0:
while \mathcal{R}_i \neq \mathcal{P}_i:
      choose S_i \in Q/\mathcal{P}_i and B_i \in Q/\mathcal{R}_i such that
                  B_i \subset S_i and \operatorname{card}(B_i) \leq \operatorname{card}(S_i)/2;
     [return: the wta M/\mathcal{R}_i;
```

Figure: A minimisation algorithm based on forward bisimulation

Forward Bisimulation

Notes

- Effective on det. wta
- Very fast O(rm log n)
- ▶ Approx. 10% reduction in test set

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Backward Bisimulation

Definition

A backward bisimulation \mathcal{R} is an equivalence relation such that for every $(p,q) \in \mathcal{R}$

• for every $\sigma \in \Sigma_k$ and $D_1, \ldots, D_k \in Q/\mathcal{R}$

$$\sum_{w \in D_1 \cdots D_k} \mu_k(\sigma)_{p,w} = \sum_{w \in D_1 \cdots D_k} \mu_k(\sigma)_{q,w}$$

Unweighted Case

If there exists a transition

Backward Bisimulation

Definition

A backward bisimulation \mathcal{R} is an equivalence relation such that for every $(p,q) \in \mathcal{R}$

• for every $\sigma \in \Sigma_k$ and $D_1, \ldots, D_k \in Q/\mathcal{R}$

$$\sum_{w \in D_1 \cdots D_k} \mu_k(\sigma)_{p,w} = \sum_{w \in D_1 \cdots D_k} \mu_k(\sigma)_{q,w}$$

Unweighted Case

then there exists $p_1 \in [q_1], \ldots, p_k \in [q_k]$ and

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Backward Bisimulation

Notes

- Generalization of [1]
- Ineffective on det. wta
- fast $O(r^2 m \log n)$
- ▶ Approx. 40% reduction in test set

Figure: Reduced wta

Results

TREES	ORIG.	BWD	FWD	AKH	FWD, BWD	BWD, FWD
58	353	252	286	353	185	180
161	953	576	749	953	378	356
231	1373	781	1075	1373	494	468
287	1726	947	1358	1726	595	563

Table: State set reduction after minimisation

Funny Fact

- ▶ Jonathan's implementation (PERL) took < 1 second to run all tests
- My verification implementation (HASKELL) took > 4 hours for the last example alone

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Table of Contents

Weighted Tree Automata

Bisimulation Minimization

Minimization of Deterministic Devices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

Wta is *deterministic* if for every $\sigma \in \Sigma_k$ and $w \in Q^k$ there exists at most one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq 0$.

Notes

Determinization is possible in locally-finite semirings [2]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Partial determinization for probabilities [4]

Myhill-Nerode Congruence

Definition

 $t \equiv u$ if there exist $a, b \in A \setminus \{0\}$ such that for every context C

$$a \cdot (\|M\|, C[t]) = b \cdot (\|M\|, C[u])$$

Approach

- Identify dead states (those do not contribute at all)
- Move from trees to states; define congruence on states
- Compute the coarsest equivalence on the states subject to the above condition

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Minimization of deterministic devices

Notes

- No real tests yet!
- ▶ Rather efficient $O(rmn^4)$, which can certainly be improved
- My (!!) implementation takes reasonable time on examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

References

- P. A. Abdulla, J. Högberg, and L. Kaati.
 Bisimulation minimization of tree automata.
 Int. J. Foundations of Computer Science, 18(4):699–713, 2007.
- B. Borchardt and H. Vogler.
 Determinization of finite state weighted tree automata.
 Journal of Automata, Languages and Combinatorics, 8(3):417-463, 2003.
 - P. Buchholz.

Bisimulation relations for weighted automata. *Theoretical Computer Science*, 2008. to appear.

Jonathan May and Kevin Knight. A better n-best list: Practical determinization of weighted finite tree automata. In *HLT-NAACL*, 2006.