MYHILL-NERODE Theorem for Recognizable Tree Series — Revisited

Andreas Maletti

LATIN — 7 April 2008

Input sentence

She saw the boy with the telescope.

0.33

Prerequisites

Semiring structure on weights

Prerequisites

Semiring structure on weights; e.g. $(\mathbb{R}, +, \cdot, 0, 1)$

Prerequisites

- Semiring structure on weights
- **Commutative** semiring; i.e. · commutative

Prerequisites

- Semiring structure on weights
- Commutative semiring; i.e. · commutative
- ► A mapping *f* assigning weights to infinitely many trees

Prerequisites

- Semiring structure on weights
- Commutative semiring; i.e. commutative
- A mapping *f* assigning weights to infinitely many trees

Question

How to finitely represent such maps f?

Prerequisites

- Semiring structure on weights
- Commutative semiring; i.e. · commutative
- ► A mapping *f* assigning weights to infinitely many trees

Question

How to finitely represent such maps f?

Immediate answer

Non-default value (\neq 0) for only finitely many trees

Prerequisites

- Semiring structure on weights
- Commutative semiring; i.e. · commutative
- A mapping *f* assigning weights to infinitely many trees

Question

How to finitely represent such maps f?

Better answer

Finite-state automaton computes map

Determinism

- For efficiency we prefer deterministic devices
- Single run for each input

Determinism

- For efficiency we prefer deterministic devices
- Single run for each input

Questions

Which mappings can be computed in this way?

Determinism

- For efficiency we prefer deterministic devices
- Single run for each input

Questions

- Which mappings can be computed in this way?
- Can a given map f be computed in this way?

Determinism

- For efficiency we prefer deterministic devices
- Single run for each input

Questions

- Which mappings can be computed in this way?
- Can a given map f be computed in this way?
- ▶ How many states are needed to compute a map f?

Determinism

- For efficiency we prefer deterministic devices
- Single run for each input

Questions

- Which mappings can be computed in this way?
- Can a given map f be computed in this way?
- ▶ How many states are needed to compute a map f?

Answer

The MYHILL-NERODE congruence relation

Table of Contents

Motivation

Weighted tree automaton

 $\ensuremath{\operatorname{MYHILL}}\xspace$. Nerode characterizations

Table of Contents

Motivation

Weighted tree automaton

MYHILL-NERODE characterizations

Syntax

Definition (Borchardt and Vogler '03) Weighted tree automaton: (Q, Σ, A, μ, F)

- Q finite set of states
- Σ ranked alphabet of input symbols
- $A = (A, +, \cdot, 0, 1)$ commutative semiring of weights
- $\mu = (\mu_k)_{k \geq 0}$ with $\mu_k \colon Q^k imes \Sigma^{(k)} imes Q o A$ transition weights
- $F: Q \rightarrow A$ final weights

Syntax

Definition (Borchardt and Vogler '03) Weighted tree automaton: (Q, Σ, A, μ, F)

- Q finite set of states
- Σ ranked alphabet of input symbols
- $A = (A, +, \cdot, 0, 1)$ commutative semiring of weights
- ▶ $\mu = (\mu_k)_{k \ge 0}$ with $\mu_k : Q^k \times \Sigma^{(k)} \times Q \to A$ transition weights
- $F: Q \rightarrow A$ final weights

Definition

deterministic wta: for every $(w, \sigma) \in Q^k \times \Sigma^{(k)}$ there exists exactly one $q \in Q$ such that $\mu_k(w, \sigma, q) \neq 0$ Example — Syntax

Example

Example

Semantics

 $\begin{array}{l} \text{Definition} \\ h_{\mu} \colon \operatorname{Trees}(\Sigma) \to A^{Q} \end{array}$

Semantics

 $\begin{array}{l} \text{Definition} \\ h_{\mu} \colon \operatorname{Trees}(\Sigma) \to A^{Q} \end{array}$

Semantics

$$\|M\|(t) = \sum_{q \in Q} F(q) \cdot h_{\mu}(t)_q$$

Table of Contents

Motivation

Weighted tree automaton

 $M_{\ensuremath{\texttt{YHILL}}\xspace}\textsc{Nerode}$ characterizations

Recognizability

Definition recognizable f: there exists wta M such that ||M|| = f

Recognizability

Definition recognizable f: there exists wta M such that ||M|| = fNotation

▶ Context: tree with exactly one occurrence of □

Recognizability

Definition recognizable f: there exists wta M such that ||M|| = fNotation

▶ Context: tree with exactly one occurrence of \Box

Definition

For every $t \in \text{Trees}(\Sigma)$ let $t^{-1}f$: $\text{Contexts}(\Sigma) \to A$ with

$$t^{-1}f(c) = f(c[t])$$

Notation

size: number of nodes in a tree

Example

Given two trees t and u

$$t^{-1}$$
 size (c) = size $(c[t])$ = size (c) - 1 + size (t)
 u^{-1} size (c) = size $(c[u])$ = size (c) - 1 + size (u)

Notation

size: number of nodes in a tree

Example

Given two trees t and u

$$t^{-1}$$
 size (c) = size $(c[t])$ = size (c) - 1 + size (t)
 u^{-1} size (c) = size $(c[u])$ = size (c) - 1 + size (u)

Hence t^{-1} size $(c) = u^{-1}$ size(c) +size(t) -size(u)

Notation

size: number of nodes in a tree

Example

Given two trees t and u

$$t^{-1}$$
 size(c) = size(c[t]) = size(c) - 1 + size(t)
 u^{-1} size(c) = size(c[u]) = size(c) - 1 + size(u)

Hence t^{-1} size $(c) = u^{-1}$ size(c) +size(t) -size(u)

- Suppose that A is a field
- V_f sub-vectorspace generated by $t^{-1}f$ for all t

Notation

size: number of nodes in a tree

Example

Given two trees t and u

$$t^{-1}$$
 size(c) = size(c[t]) = size(c) - 1 + size(t)
 u^{-1} size(c) = size(c[u]) = size(c) - 1 + size(u)

Hence t^{-1} size $(c) = u^{-1}$ size(c) +size(t) -size(u)

- Suppose that A is a field
- V_f sub-vectorspace generated by $t^{-1}f$ for all t
- t^{-1} size and $\vec{1}$ are basis of V_{size} and $\dim V_{\text{size}} = 2$

Recognizability (cont'd)

Theorem (Bozapalidis, Louscou-Bozapalidou '83) Let A field and $f: \operatorname{Trees}(\Sigma) \to A$

f recognizable \iff dim V_f finite

Notes

- String case by [Reutenauer '80]
- Refined by [Arz '83] to identify requirements for direction
- Led to necessary and/or sufficient conditions of recognizability

Recognizability (cont'd)

Theorem (Bozapalidis, Louscou-Bozapalidou '83) Let A field and $f: \operatorname{Trees}(\Sigma) \to A$

f recognizable \iff dim V_f finite

Notes

- String case by [Reutenauer '80]
- Refined by [Arz '83] to identify requirements for direction
- Led to necessary and/or sufficient conditions of recognizability
- Tree case: no refinement yet

Deterministic recognizability

Definition det. recognizable f: there is det. wta M such that ||M|| = fDefinition (MYHILL-NERODE CONGRUENCE)

 $t \equiv_f u$: there is nonzero $a \in A$ such that $t^{-1}f = a \cdot u^{-1}f$

 $f(c[t]) = a \cdot f(c[u]) \quad \forall \text{ contexts } c$

Deterministic recognizability

Definition det. recognizable f: there is det. wta M such that ||M|| = f

Definition (MYHILL-NERODE CONGRUENCE)

 $t \equiv_f u$: there is nonzero $a \in A$ such that $t^{-1}f = a \cdot u^{-1}f$

 $f(c[t]) = a \cdot f(c[u]) \quad \forall \text{ contexts } c$

Example

 $t \equiv_{size} u$ iff size(t) = size(u) because

$$t^{-1}$$
 size(c) = size(c) - 1 + size(t)
 u^{-1} size(c) = size(c) - 1 + size(u)

Deterministic recognizability

Definition det. recognizable f: there is det. wta M such that ||M|| = f

Definition (MYHILL-NERODE CONGRUENCE)

 $t \equiv_f u$: there is nonzero $a \in A$ such that $t^{-1}f = a \cdot u^{-1}f$

 $f(c[t]) = a \cdot f(c[u]) \quad \forall \text{ contexts } c$

Example

 $t \equiv_{size} u$ iff size(t) = size(u) because

$$t^{-1}\operatorname{size}(c) = \operatorname{size}(c) - 1 + \operatorname{size}(t)$$
$$u^{-1}\operatorname{size}(c) = \operatorname{size}(c) - 1 + \operatorname{size}(u)$$

Index of \equiv_{size} infinite

Deterministic recognizability (cont'd)

Theorem (Borchardt '03) Let A semifield and $f: \operatorname{Trees}(\Sigma) \to A$

f det. recognizable $\iff \equiv_f$ finite index

Deterministic recognizability (cont'd)

Theorem (Borchardt '03) Let A semifield and $f: \operatorname{Trees}(\Sigma) \to A$

f det. recognizable $\iff \equiv_f$ finite index

Notes

- So size is not det. recognizable
- Refinements only for smaller classes (all-accepting wta)

Refinement

Definition (Borchardt '05)

 $t \equiv_{\mathbf{f}} u$: there exist nonzero $a, b \in A$ such that $a \cdot t^{-1}f = b \cdot u^{-1}f$

 $a \cdot f(c[t]) = b \cdot f(c[u]) \quad \forall \text{ contexts } c$

Refinement

Definition (Borchardt '05)

 $t \equiv_{\mathbf{f}} u$: there exist nonzero $a, b \in A$ such that $a \cdot t^{-1}f = b \cdot u^{-1}f$

 $a \cdot f(c[t]) = b \cdot f(c[u]) \quad \forall \text{ contexts } c$

Definition Zero-divisor free A: $a \cdot b = 0$ implies $0 \in \{a, b\}$

Refinement

Definition (Borchardt '05)

 $t \equiv_f u$: there exist nonzero $a, b \in A$ such that $a \cdot t^{-1}f = b \cdot u^{-1}f$

 $a \cdot f(c[t]) = b \cdot f(c[u]) \quad \forall \text{ contexts } c$

Definition Zero-divisor free A: $a \cdot b = 0$ implies $0 \in \{a, b\}$

Lemma

If A zero-divisor free, then \equiv_f congruence of term algebra $\operatorname{Trees}(\Sigma)$

Theorem (Necessary condition) If A zero-divisor free, then

 $f \ det. \ recognizable \implies \equiv_f \ finite \ index$

Theorem (Necessary condition) If A zero-divisor free, then

 $f \ det. \ recognizable \implies \equiv_f \ finite \ index$

Theorem

If A zero-divisor free, then every det. wta recognizing f has at least $index(\equiv_f)$ states

Theorem (Necessary condition) If A zero-divisor free, then

f det. recognizable \implies \equiv_f finite index

Theorem

If A zero-divisor free, then every det. wta recognizing f has at least $index(\equiv_f)$ states

Corollary height (longest path) not det. recognizable using addition

Question What about

f det. recognizable $\iff \equiv_f$ finite index

Question What about

f det. recognizable $\iff \equiv_f$ finite index

Notes

Holds for semifields [Borchardt '03]

Question What about

f det. recognizable $\iff \equiv_f$ finite index

Notes

- Holds for semifields [Borchardt '03]
- In the string case: Refinement for certain cancellative semirings by [Eisner '03]
- In the tree case: Open

Definition (Drewes and Vogler '07) all-accepting wta: $F = \vec{1}$

Definition (Drewes and Vogler '07) all-accepting wta: $F = \vec{1}$

Definition

subtree-closed f: $f(t) \neq 0$ implies $f(u) \neq 0$ for all subtrees u of t

Definition (Drewes and Vogler '07) all-accepting wta: $F = \vec{1}$

Definition

subtree-closed f: $f(t) \neq 0$ implies $f(u) \neq 0$ for all subtrees u of t

Lemma

f det. aa-recognizable iff f det. recognizable and subtree-closed

Definition (Drewes and Vogler '07) all-accepting wta: $F = \vec{1}$

Definition

subtree-closed f: $f(t) \neq 0$ implies $f(u) \neq 0$ for all subtrees u of t

Lemma

f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem If A cancellative, then

 $f det. aa-recognizable \iff \equiv_f finite index and f subtree-closed$

Notes

Improves on a similar statement for semifield

References (1/2)

J. Arz. Syntactic congruences and syntactic algebras. *RAIRO Theoretical Informatics*, 17(3):231–238, 1983.

🔋 Björn Borchardt.

The Myhill-Nerode theorem for recognizable tree series. In *Proc. DLT*, volume 2710 of LNCS, pages 146–158. Springer, 2003.

- Björn Borchardt and Heiko Vogler.
 Determinization of finite state weighted tree automata.
 J. Autom. Lang. Combin., 8(3):417-463, 2003.
- Symeon Bozapalidis and Olympia Louscou-Bozapalidou. The rank of a formal tree power series. *Theoret. Comput. Sci.*, 27:211–215, 1983.

References (2/2)

- Frank Drewes and Heiko Vogler. Learning deterministically recognizable tree series. J. Autom. Lang. Combin., 2007.
 - C. Reutenauer.

Séries formelles et algébres syntactiques.

J. Algebra, 66:448-483, 1980.

Thank You!