Tree Transducers in Machine Translation

Andreas Maletti

Universität Stuttgart

andreas.maletti@ims.uni-stuttgart.de

Stuttgart — March 2, 2011

Applications

Technical manuals

Example (An mp3 player)

The synchronous manifestation of lyrics is a procedure for can broadcasting the music, waiting the mp3 file at the same time showing the lyrics.

With the this kind method that the equipments that synchronous function of support up broadcast to make use of document create setup, you can pass the LCD window way the check at the document contents that broadcast.

That procedure returns offerings to have to modify, and delete, and stick top, keep etc. edit function.

Tree Transducers in MT

Applications

Technical manuals

Example (An mp3 player)

The synchronous manifestation of lyrics is a procedure for can broadcasting the music, waiting the mp3 file at the same time showing the lyrics.

With the this kind method that the equipments that synchronous function of support up broadcast to make use of document create setup, you can pass the LCD window way the check at the document contents that broadcast.

That procedure returns offerings to have to modify, and delete, and stick top, keep etc. edit function.

Applications

Technical manuals

Example (An mp3 player)

The synchronous manifestation of lyrics is a procedure for can broadcasting the music, waiting the mp3 file at the same time showing the lyrics.

With the this kind method that the equipments that synchronous function of support up broadcast to make use of document create setup, you can pass the LCD window way the check at the document contents that broadcast.

That procedure returns offerings to have to modify, and delete, and stick top, keep etc. edit function.

Tree Transducers in MT

Applications

- Technical manuals
- TripAdvisor[®]

Example (Hotel Uppsala, Sweden)

Wir hatten die Zimmer eingestuft wird als "Superior" weil sie renoviert wurde im letzten Jahr oder zwei. Unsere Zimmer hatten Parkettboden und waren sehr geräumig. Man musste allerdings nicht musste seitwärts bewegen.

Applications

- Technical manuals
- TripAdvisor[®]

Example (Hotel Uppsala, Sweden)

Nos alojamos en habitaciones clasificado como "superior" porque se lo habían renovado en el año pasado o dos. Nuestras habitaciones tenían suelos de madera y eran espaciosas. No te tenías que caminar arriba para movernos por allí.

Tree Transducers in MT

Applications

- Technical manuals
- TripAdvisor[®]

Example (Hotel Uppsala, Sweden)

Wir hatten die Zimmer eingestuft wird als "Superior" weil sie renoviert wurde im letzten Jahr oder zwei. Unsere Zimmer hatten Parkettboden und waren sehr geräumig. Man musste allerdings nicht musste seitwärts bewegen.

— We stayed in rooms classified as "superior" because they had been renovated in the last year or two. Our rooms had wood floors and were roomy. You didn't have to walk sideways to move around.

Applications

Technical manuals

TripAdvisor[®]

Military

Example (JONES, SHEN, HERZOG 2009)

Soldier: Okay, what is your name?

Local: Abdul.

Soldier: And your last name?

Local: Al Farran.

Tree Transducers in MT

Applications

- Technical manuals
- TripAdvisor[®]
- Military

Example (JONES, SHEN, HERZOG 2009)

Soldier: Okay, what is your name?

Local: Abdul.

Soldier: And your last name?

Local: Al Farran.

Speech-to-text machine translation

Soldier: Okay, what's your name?

Local: milk a mechanic and I am here

I mean yes

Applications

Technical manuals

TripAdvisor[®]

Military

Example (JONES, SHEN, HERZOG 2009)

Soldier: Okay, what is your name?

Local: Abdul.

Soldier: And your last name?

Local: Al Farran.

Speech-to-text machine translation

Soldier: Okay, what's your name?

Local: milk a mechanic and I am here

I mean yes

Soldier: What is your last name?

Local: every two weeks

my son's name is ismail

Tree Transducers in MT A. Maletti • A. Maletti •

Applications

- Technical manuals
- TripAdvisor[®]
- Military
- MSDN, Knowledge Base

...

Systems

- GOOGLE translate
- BING translator
- Language Weaver + SDL
- . .

translate.google.com

www.microsofttranslator.com

www.freetranslation.com

Tree Transducers in MT

Systems

- GOOGLE translate
- BING translator
- Language Weaver + SDL
- ...

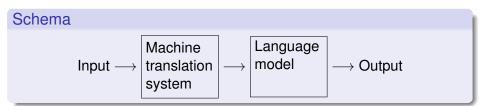
translate.google.com

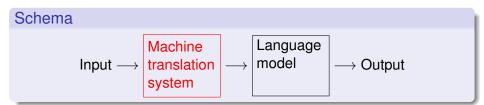
www.microsofttranslator.com

www.freetranslation.com

Try them!

History


- Dark age (60s–90s)
 - rule-based systems (e.g., SYSTRAN)
 - CHOMSKYAN approach
 - perfect translation, poor coverage
- 2 Reformation (1991–present)
 - word-based, phrase-based, syntax-based systems
 - statistical approach
 - cheap, automatically trained
- Open Potential future
 - semantics-based systems (e.g., FRAMENET)
 - semi-supervised, statistical approach
 - basic understanding of translated text


History

- Dark age (60s–90s)
 - rule-based systems (e.g., SYSTRAN)
 - CHOMSKYAN approach
 - perfect translation, poor coverage
- Reformation (1991–present)
 - word-based, phrase-based, syntax-based systems
 - statistical approach
 - cheap, automatically trained
- Open Potential future
 - semantics-based systems (e.g., FRAMENET)
 - semi-supervised, statistical approach
 - basic understanding of translated text

History

- Dark age (60s–90s)
 - rule-based systems (e.g., SYSTRAN)
 - CHOMSKYAN approach
 - perfect translation, poor coverage
- Reformation (1991–present)
 - word-based, phrase-based, syntax-based systems
 - statistical approach
 - cheap, automatically trained
- Potential future
 - semantics-based systems (e.g., FRAMENET)
 - semi-supervised, statistical approach
 - basic understanding of translated text

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

Derivation

Input:

And then the matter was decided , and everything was put in place

Output:

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

Derivation

Input:

then the matter was decided, and everything was put in place

Output:

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

Derivation

Input:

the matter was decided, and everything was put in place

Output:

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

Derivation

Input:

the matter was decided, and everything was put in place

Output:

f

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

Derivation

Input:

the matter was decided, and everything was put in place

Output:

f kAn

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

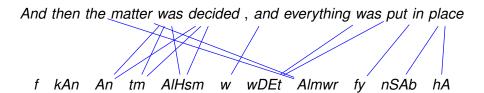
the matter was decided, and everything was put in place

Output:

f kAn

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA


Derivation

Input:

the matter was decided, and everything was put in place

Output:

f kAn

Derivation

Input:

the matter was decided, and everything was put in place

Output:

f kAn

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

the matter , and everything was put in place

Output:

f kAn An tm AlHsm

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

the matter and everything was put in place

Output:

f kAn An tm AlHsm

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

the matter everything was put in place

Output:

f kAn An tm AlHsm w

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

the matter was put in place

Output:

f kAn An tm AlHsm w

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

the matter was put in place

Output:

f kAn An tm AlHsm w

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb hA

Derivation

Input:

the matter in place

Output:

f kAn An tm AlHsm w wDEt

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fy nSAb h

Derivation

Input:

in place

Output:

f kAn An tm AlHsm w wDEt Almwr

And then the matter was decided, and everything was put in place

w

wDEt Almwr

nSAb

AlHsm

Derivation

f kAn

Input:

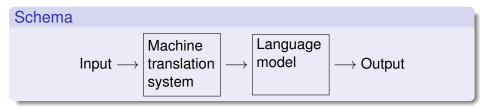
place

Output:

f kAn An tm AlHsm w wDEt Almwr fy

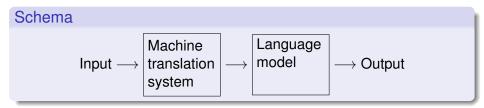
And then the matter was decided, and everything was put in place

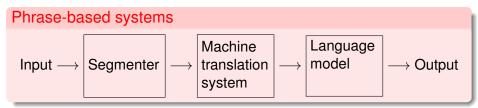
f kAn An tm AlHsm w wDEt Almwr fy nSAb hA


Derivation

Input:

Output:


f kAn An tm AlHsm w wDEt Almwr fy nSAb hA


Phrase-based machine translation

Phrase-based machine translation

Phrase-based system (FST+Perm)

And then the matter was decided, and everything was put in place

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

Derivation

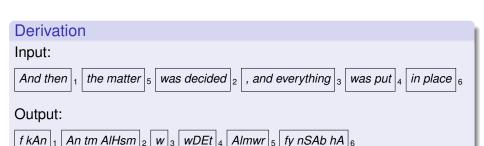
Input:

And then the matter was decided, and everything was put in place

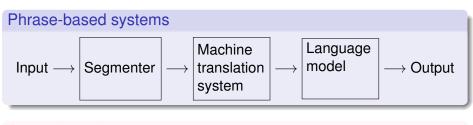
Output:

Phrase-based system (FST+Perm)

And then the matter was decided, and everything was put in place

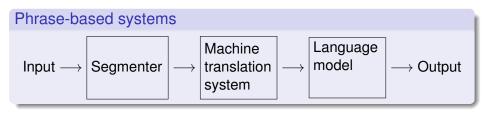

f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

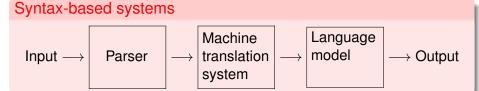
Derivation Input: And then 1 the matter 5 was decided 2, and everything 3 was put 4 in place 6 Output:

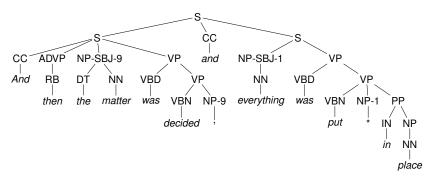

Phrase-based system (FST+Perm)

And then the matter was decided, and everything was put in place

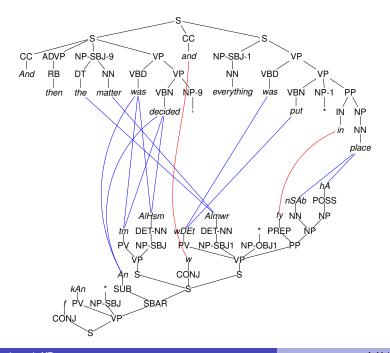
f kAn An tm AlHsm w wDEt Almwr fv nSAb hA

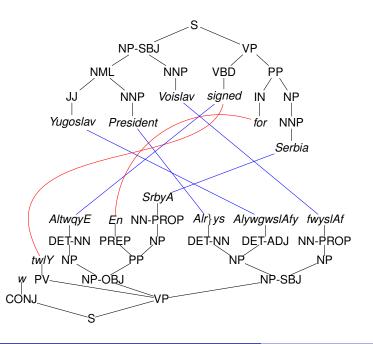



Machine translation (cont'd)



Machine translation (cont'd)


Parser



And then the matter was decided, and everything was put in place

(thanks to **KEVIN KNIGHT** for the data)

10

Contents

Machine Translation

Extended Top-down Tree Transducers

Multi Bottom-up Tree Transducers

Synchronous Tree-Adjoining Grammars

Tree Transducers in MT

Weight structure

Definition

Commutative semiring $(C, +, \cdot, 0, 1)$ if

- ullet (C,+,0) and $(C,\cdot,1)$ commutative monoids
- · distributes over finite (incl. empty) sums

Example

- BOOLEAN semiring ({0,1}, max, min, 0, 1)
- Semiring $(\mathbb{R}_{\geq 0}, +, \cdot, 0, 1)$ of probabilities
- \bullet Tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- Any field, ring, etc.

Most of the talk: BOOLEAN semiring

Weight structure

Definition

Commutative semiring $(C, +, \cdot, 0, 1)$ if

- ullet (C,+,0) and $(C,\cdot,1)$ commutative monoids
- · distributes over finite (incl. empty) sums

Example

- BOOLEAN semiring ({0,1}, max, min, 0, 1)
- \bullet Semiring $(\mathbb{R}_{\geq 0},+,\cdot,0,1)$ of probabilities
- Tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- Any field, ring, etc.

Most of the talk: BOOLEAN semiring

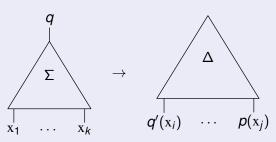
Weight structure

Definition

Commutative semiring $(C, +, \cdot, 0, 1)$ if

- ullet (C,+,0) and $(C,\cdot,1)$ commutative monoids
- distributes over finite (incl. empty) sums

Example

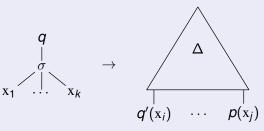

- BOOLEAN semiring ({0,1}, max, min, 0, 1)
- \bullet Semiring $(\mathbb{R}_{\geq 0},+,\cdot,0,1)$ of probabilities
- Tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- Any field, ring, etc.

Most of the talk: BOOLEAN semiring

Syntax

Definition (ARNOLD, DAUCHET 1976, GRAEHL, KNIGHT 2004)

Extended top-down tree transducer (XTOP) $M = (Q, \Sigma, \Delta, I, R)$ with finitely many rules

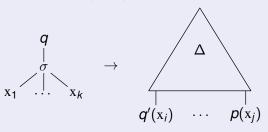


- $q, q', p \in Q$ are states
- $i, j \in \{1, ..., k\}$

Syntax (cont'd)

Definition (ROUNDS 1970, THATCHER 1970)

Top-down tree transducer (TOP) if all rules

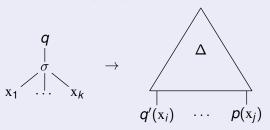


- linear if no variable occurs twice in r for all rules $l \rightarrow r$
- nondeleting if var(I) = var(r) for all rules $I \rightarrow r$

Syntax (cont'd)

Definition (ROUNDS 1970, THATCHER 1970)

Top-down tree transducer (TOP) if all rules

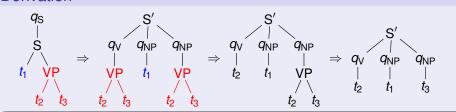


- linear if no variable occurs twice in r for all rules $l \rightarrow r$
- nondeleting if var(I) = var(r) for all rules $I \rightarrow r$

Syntax (cont'd)

Definition (ROUNDS 1970, THATCHER 1970)

Top-down tree transducer (TOP) if all rules

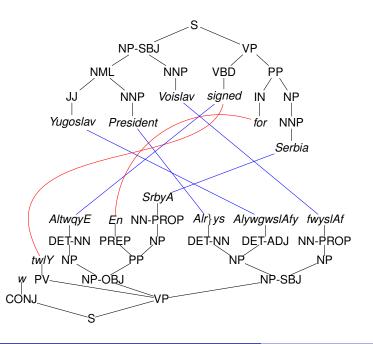

- linear if no variable occurs twice in r for all rules $l \rightarrow r$
- nondeleting if var(I) = var(r) for all rules $I \rightarrow r$

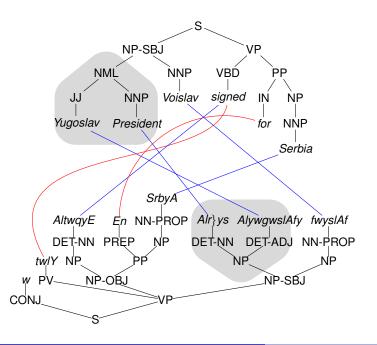
Semantics

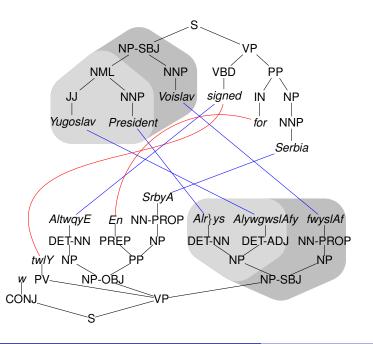
Example

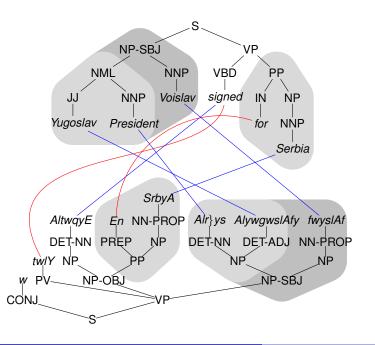
States $\{q_S, q_V, q_{NP}\}$ of which only q_S is initial

Derivation

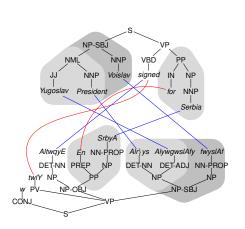


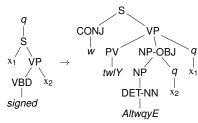

Semantics (cont'd)


Definition

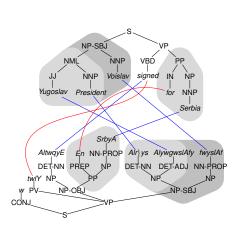

Computed transformation:

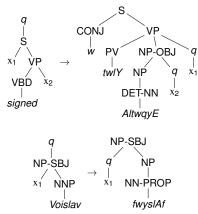
$$\tau_{M} = \{(t, u) \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in I \colon q(t) \Rightarrow^{*} u\}$$





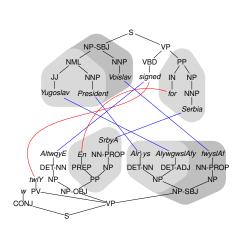
Rule extraction

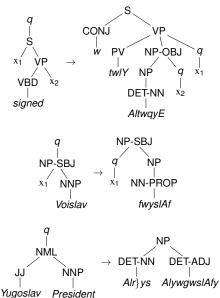




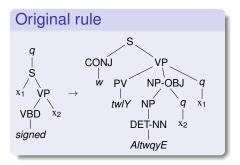
20

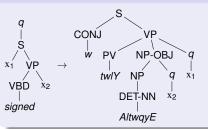
Tree Transducers in MT


Rule extraction

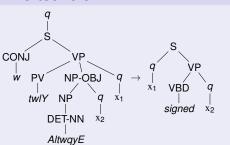


20


Rule extraction

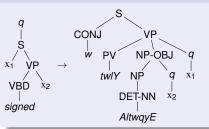

20

Symmetry



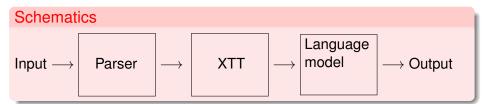
Symmetry

Original rule



Inverted rule

Symmetry


Original rule

Inverted rule

21

Linear nondeleting XTT can be inverted

Parse trees

- best parse tree
- n-best parses
- all parses

Can all be represented by regular tree language

Tree Transducers in MT

Parse trees

- best parse tree
- n-best parses
- all parses

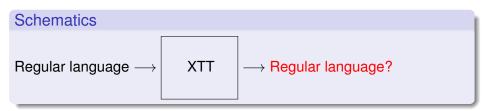
Can all be represented by regular tree language

Parse trees

- best parse tree
- n-best parses
- all parses

Can all be represented by regular tree language

Tree Transducers in MT


Parse trees

- best parse tree
- n-best parses
- all parses

Can all be represented by regular tree language

Tree Transducers in MT

Preservation of regularity (cont'd)

Approach

- Input restriction
- Project to output

Result

Linear XTT preserve regularity

Preservation of regularity (cont'd)

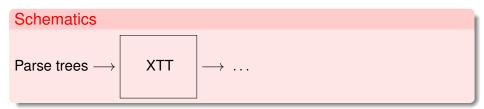
Approach

- Input restriction
- Project to output

Result

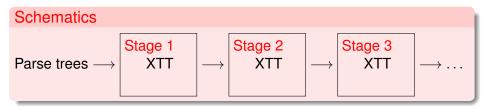
Linear XTT preserve regularity

Preservation of regularity (cont'd)


$\begin{array}{c|c} \textbf{Schematics} \\ \\ \textbf{Regular language} \longrightarrow & \textbf{XTT} & \longrightarrow \textbf{Regular language?} \\ \end{array}$

Approach

- Input restriction
- Project to output


Result

Linear XTT preserve regularity

Example (YAMADA, KNIGHT 2002)

- Reorder
- Insert words
- Translate words

Example (YAMADA, KNIGHT 2002)

- Reorder
- Insert words
- Translate words

Example (YAMADA, KNIGHT 2002)

- Reorder
- Insert words
- Translate words

Composition (cont'd)

Example (ARNOLD, DAUCHET 1982) t_1 tз t_{n-3}

Summary

Model \ Criterion	Expr	Sүм	PRES	$PRES^{-1}$	Сомр
Linear nondeleting TOP	X	X	√	✓	√
Linear TOP	X	X	✓	✓	X
Linear TOP ^R	X	X	1	✓	✓
General TOP	X	X	X	✓	X
General TOPR	✓	X	X	✓	X
Linear nondeleting XTOP	/	1	✓	✓	X
Linear XTOP	1	X	✓	✓	X
Linear XTOP ^R	✓	X	✓	✓	X
General XTOP	1	X	X	✓	X
General XTOPR	✓	X	X	\checkmark	X

Tree Transducers in MT A. Maletti ·

Summary

Model \ Criterion	Expr	Sүм	PRES	$PRES^{-1}$	Сомр
Linear nondeleting TOP	X	Х	√	✓	√
Linear TOP	X	X	✓	✓	X
Linear TOP ^R	X	X	✓	✓	✓
General TOP	X	X	X	✓	X
General TOPR	✓	X	X	✓	X
Linear nondeleting XTOP	✓	1	✓	✓	X
Linear XTOP	✓	X	✓	✓	X
Linear XTOP ^R	✓	X	✓	✓	X
General XTOP	1	X	X	✓	X
General XTOP ^R	✓	X	X	\checkmark	X
Comp. closure In-XTOP	1	1	1	✓	✓
"composable" In-XTOP	?	?	✓	✓	✓

Tree Transducers in MT A. Maletti ·

Implementation

TIBURON [MAY, KNIGHT 2006]

- Implements XTOP (and tree automata; everything also weighted)
- Framework with command-line interface
- Optimized for machine translation

Algorithms

- Application of XTOP to input tree/language
- Backward application of XTOP to output language
- Composition (for some XTOP)

Example

```
qNP.NP(DT(the) N(boy)) -> NP(N(atefl))
```

Tree Transducers in MT

Implementation

TIBURON [MAY, KNIGHT 2006]

- Implements XTOP (and tree automata; everything also weighted)
- Framework with command-line interface
- Optimized for machine translation

Algorithms

- Application of XTOP to input tree/language
- Backward application of XTOP to output language
- Composition (for some XTOP)

Example

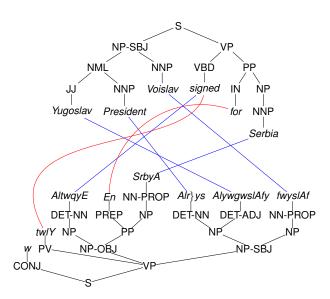
```
qNP.NP(DT(the) N(boy)) -> NP(N(atefl))
```

Implementation

TIBURON [MAY, KNIGHT 2006]

- Implements XTOP (and tree automata; everything also weighted)
- Framework with command-line interface
- Optimized for machine translation

Algorithms

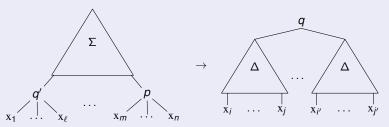

- Application of XTOP to input tree/language
- Backward application of XTOP to output language
- Composition (for some XTOP)

Example

```
qNP.NP(DT(the) N(boy)) -> NP(N(atefl))
```

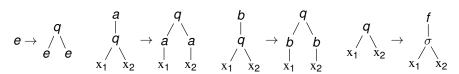
Tree Transducers in MT

Multi Bottom-up Tree Transducers


Tree Transducers in MT A. Maletti

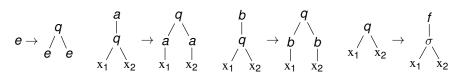
Syntax

Definition

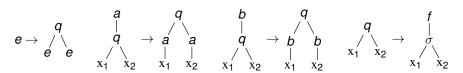

Extended multi bottom-up tree transducer (XMBOT)

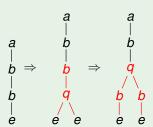
is $M = (Q, \Sigma, \Delta, F, R)$ with finitely many rules

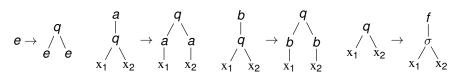
- $q', p, q \in Q$ are now ranked states
- $F \subset Q_1$ final states

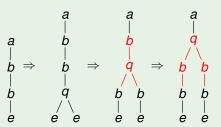

States $\{f^{(1)}, q^{(2)}\}$ with final state f and rules

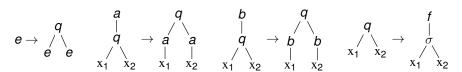
Example (Derivation)

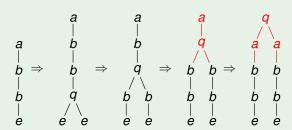

States $\{f^{(1)}, g^{(2)}\}$ with final state f and rules


Example (Derivation)

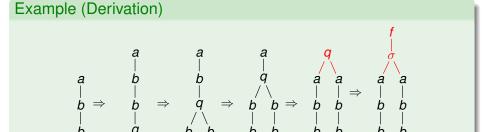

States $\{f^{(1)}, g^{(2)}\}$ with final state f and rules


Example (Derivation)


States $\{f^{(1)}, q^{(2)}\}$ with final state f and rules


Example (Derivation)

States $\{f^{(1)}, q^{(2)}\}$ with final state f and rules


Example (Derivation)

Tree Transducers in MT

States $\{f^{(1)}, g^{(2)}\}$ with final state f and rules

$$e \to \bigvee_{e} e e \bigvee_{x_{1} \ x_{2} \ x_{1} \ x_{$$

Semantics

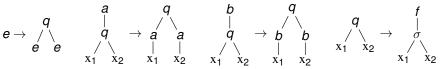
Definition

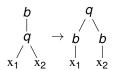
Computed transformation:

$$\tau_{M} = \{(t, u) \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in F \colon t \Rightarrow^{*} q(u)\}$$

Semantics

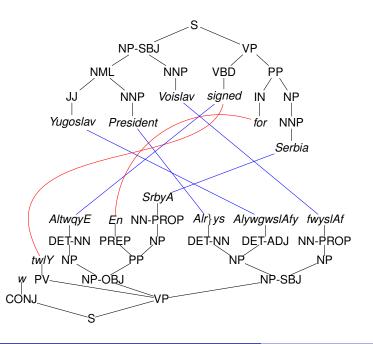
Definition

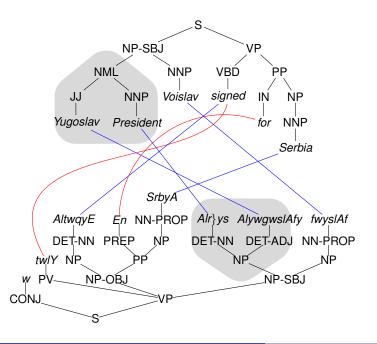

Computed transformation:


$$\tau_{M} = \{(t, u) \in T_{\Sigma} \times T_{\Delta} \mid \exists q \in F \colon t \Rightarrow^{*} q(u)\}$$

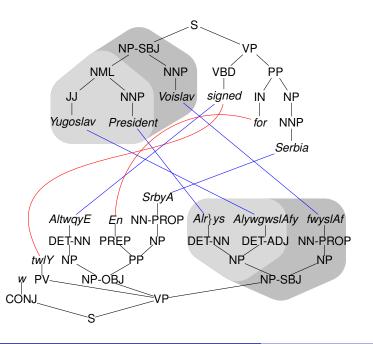
Example

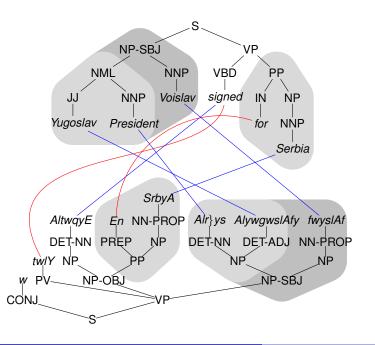
$$\tau_{M} = \{ \langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma} \}$$

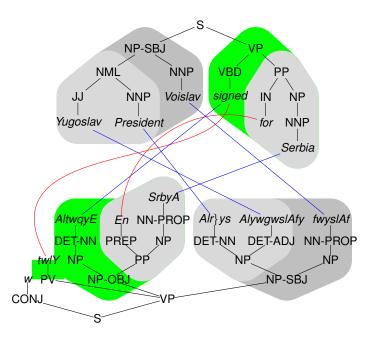



$$\begin{array}{c}
q & f \\
\downarrow \\
x_1 & x_2
\end{array}$$

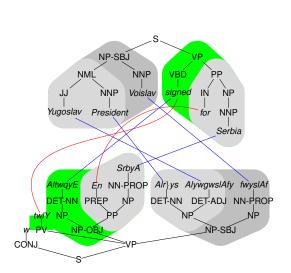
$$\xrightarrow{x_1} x_2$$

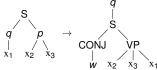

Tree Transducers in MT


Tree Transducers in MT A. Maletti ·

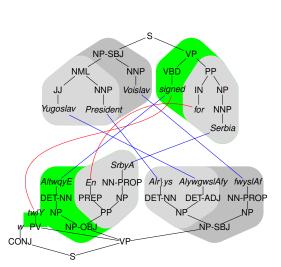

Tree Transducers in MT A. Maletti ·

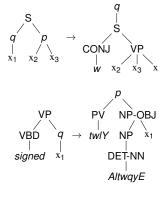
Tree Transducers in MT A. Maletti




Tree Transducers in MT A. Maletti

Tree Transducers in MT A. Maletti


Rule extraction



33

Rule extraction

One-symbol normal form

Definition

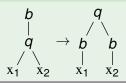

Rule in one-symbol normal form if it contains at most one symbol

One-symbol normal form

Definition

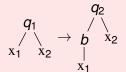
Rule in one-symbol normal form if it contains at most one symbol

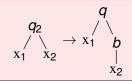
Example (ENGELFRIET, LILIN, \sim 2009)



One-symbol normal form

Definition


Rule in one-symbol normal form if it contains at most one symbol


Example (ENGELFRIET, LILIN, \sim 2009)

In one-symbol normal form

Basic properties

Example (Copying translation)

$$\tau_{M} = \{ \langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma} \}$$

Consequences

- XMBOT are not symmetric
- XMBOT do not preserve regularity
- but they can be composed

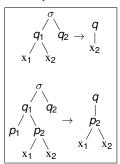
Basic properties

Example (Copying translation)

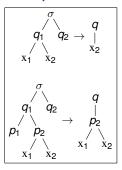
$$\tau_{M} = \{ \langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma} \}$$

Consequences

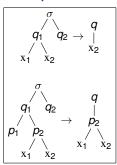
- XMBOT are not symmetric
- XMBOT do not preserve regularity
- but they can be composed

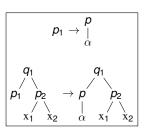

Basic properties

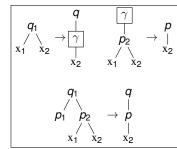
Example (Copying translation)

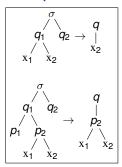

$$\tau_{M} = \{ \langle t, \sigma(t, t) \rangle \mid t \in T_{\Sigma} \}$$

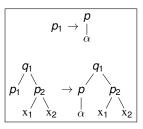
Consequences

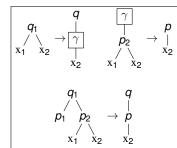

- XMBOT are not symmetric
- XMBOT do not preserve regularity
- but they can be composed




Simple composition works in the typical cases [BAKER 1979, ENGELFRIET 1975]


Simple composition works in the typical cases [BAKER 1979, ENGELFRIET 1975]





Simple composition works in the typical cases [BAKER 1979, ENGELFRIET 1975]

Simple composition works in the typical cases

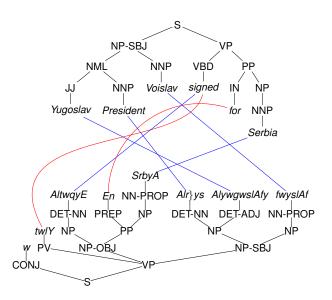
[BAKER 1979, ENGELFRIET 1975]

Summary

Model \ Criterion	EXPR	Sүм	PRES	$PRES^{-1}$	Сомр
Linear nondeleting TOP	X	Х	√	✓	✓
Linear nondeleting XTOP	✓	✓	✓	\checkmark	X
Linear nondeleting XMBOT	1	X	X	✓	1
Linear XMBOT	1	X	X	✓	✓
General XMBOT	✓	X	X	\checkmark	X
regpreserving linear XMBOT	/	Х			
invertable linear XMBOT	/				

Summary

Model \ Criterion	EXPR	Sүм	PRES	$PRES^{-1}$	Сомр
Linear nondeleting TOP	X	Х	✓	✓	√
Linear nondeleting XTOP	✓	✓	✓	✓	X
Linear nondeleting XMBOT	1	X	X	✓	✓
Linear XMBOT	✓	X	X	✓	✓
General XMBOT	✓	X	X	\checkmark	X
regpreserving linear XMBOT	1	X	1	1	✓
invertable linear XMBOT	✓	√	✓	✓	✓


Implementation

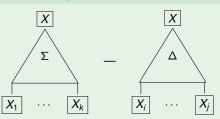
No implementation yet,

Implementation

No implementation yet, but stay tuned

Synchronous Tree-Adjoining Grammars

Tree Transducers in MT A. Maletti

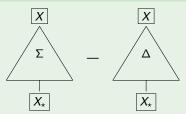

Syntax

Definition (SHIEBER, SCHABES 1990)

Synchronous tree-adjoining grammar (STAG) is $G = (N, \Sigma, \Delta, S, R)$ with a finite set R of

- substitution rules
- adjunction rules

Example (Substitution rule)

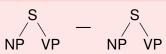

Syntax

Definition (SHIEBER, SCHABES 1990)

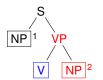
Synchronous tree-adjoining grammar (STAG) is $G = (N, \Sigma, \Delta, S, R)$ with a finite set R of

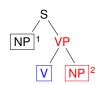
- substitution rules
- adjunction rules

Example (Adjunction rule)



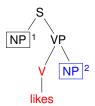
S

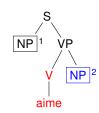

S



Used substitution rule

Tree Transducers in MT A. Maletti ·



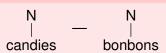


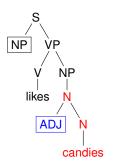
Used substitution rule

$$\stackrel{\mathsf{VP}}{/\!\!\setminus} - \stackrel{\mathsf{VP}}{/\!\!\setminus} \ \mathsf{NP}$$

Tree Transducers in MT A. Maletti ·

Used substitution rule

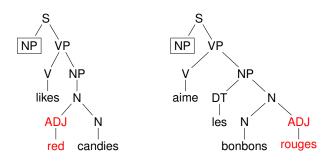

Tree Transducers in MT A. Maletti ·


Used substitution rule

Tree Transducers in MT A. Maletti

41

Used substitution rule



41

Used adjunction rule

$$N - N$$
ADJ N_{\star} ADJ

Used substitution rule

41

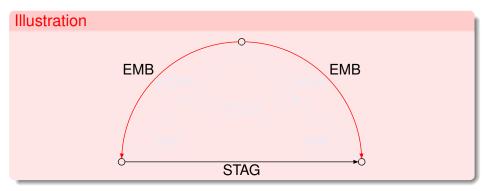
Semantics

Definition

Computed transformation:

$$\tau_{G} = \{(t, u) \in T_{\Sigma} \times T_{\Delta} \mid (S, S) \Rightarrow^{*} (t, u)\}$$

Relation to tree transducers

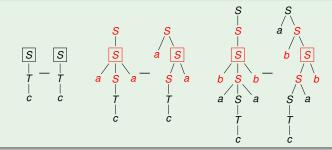


Definition (SHIEBER 2006)

embedded tree transducer is a macro tree transducer:

- linear, nondeleting, deterministic, total
- 1-parameter: linear, nondeleting

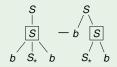
Relation to tree transducers


Definition (SHIEBER 2006)

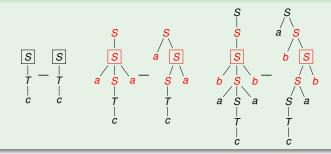
embedded tree transducer is a macro tree transducer:

- linear, nondeleting, deterministic, total
- 1-parameter: linear, nondeleting

Copying example


Example

Example


$$\begin{bmatrix} S & S \\ S & -a \end{bmatrix} = \begin{bmatrix} S & S \\ S & A \end{bmatrix}$$

$$\begin{array}{c|c} S & S \\ \mid & - \mid \\ S_{\star} & S_{\star} \end{array}$$

Copying example

Example

String translation

 $\{(wcw^{R}, wcw) \mid w \in \{a, b\}^{*}\}$

Basic properties

Example (Copying translation)

$$au_{\mathsf{G}} = \{(\mathit{wcw}^{\mathsf{R}}, \mathit{wcw}) \mid \mathit{w} \in \{\mathit{a}, \mathit{b}\}^*\}$$

Consequences

- STAG are symmetric
- STAG do not preserve regularity (neither direction)

Basic properties

Example (Copying translation)

$$\tau_{\mathcal{G}} = \{(wcw^{\mathsf{R}}, wcw) \mid w \in \{a, b\}^*\}$$

Consequences

- STAG are symmetric
- STAG do not preserve regularity (neither direction)

Summary

Model \ Criterion	EXPR	Sүм	PRES	$PRES^{-1}$	Сомр
Linear nondeleting TOP	X	Х	√	✓	√
Linear nondeleting XTOP	✓	✓	✓	✓	X
Linear nondeleting XMBOT	✓	X	X	✓	✓
Linear XMBOT	1	X	X	✓	✓
General XMBOT	✓	X	X	✓	X
regpreserving linear XMBOT	1	X	✓	✓	✓
invertable linear XMBOT	✓	✓	✓	✓	✓
STAG	✓	1	X	×	×

Implementation

XTAG [THE XTAG PROJECT 2008]

- Implements TAG, STAG
- Optimized for natural language applications
- Application of STAG

http://www.cis.upenn.edu/~xtag/

Implementation

XTAG [THE XTAG PROJECT 2008]

- Implements TAG, STAG
- Optimized for natural language applications
- Application of STAG

http://www.cis.upenn.edu/~xtag/

References

- ARNOLD, DAUCHET: Bi-transductions de forêts. ICALP 1976
- BERSTEL, REUTENAUER: Recognizable formal power series on trees. Theor. Comput. Sci. 18, 1982
- ENGELFRIET: Top-down tree transducers with regular look-ahead.
 Math. Systems Theory 10, 1977
- GALLEY, HOPKINS, KNIGHT, MARCU: What's in a translation rule? HLT-NAACL 2004
- GRAEHL, KNIGHT: Training tree transducers. HLT-NAACL 2004
- MAY, KNIGHT: TIBURON a weighted tree automata toolkit.
 CIAA 2006
- ROUNDS: Mappings and grammars on trees. Math. Systems Theory 4, 1970
- THATCHER Generalized² sequential machine maps. J. Comput. System Sci. 4, 1970