Hyper-minimization for deterministic weighted tree automata

Andreas Maletti and Daniel Quernheim

Institute of Computer Science, Universität Leipzig, Germany maletti@informatik.uni-leipzig.de

May 29, 2014

Overview

Weighted Tree Language

- Assigns weight (e.g. a probability) to each tree
- Weight drawn from commutative semiring; e.g. $(\mathbb{Q}, +, \cdot, 0, 1)$

Overview

Weighted Tree Language

- Assigns weight (e.g. a probability) to each tree
- Weight drawn from commutative semiring; e.g. $(\mathbb{Q}, +, \cdot, 0, 1)$

Weighted Tree Automaton

- Finitely represents weighted tree language
- Defines the recognizable weighted tree languages

Overview

Weighted Tree Language

- Assigns weight (e.g. a probability) to each tree
- Weight drawn from commutative semiring; e.g. $(\mathbb{Q}, +, \cdot, 0, 1)$

Weighted Tree Automaton

- Finitely represents weighted tree language
- Defines the recognizable weighted tree languages

Application

- Re-ranker for parse trees
- Representation of parses

large models

Basics

Semiring

Definition

A commutative semiring is an algebraic structure $\mathcal{A} = (A, +, \cdot, 0, 1)$

- (A, +, 0) commutative monoid
- $(A, \cdot, 1)$ commutative monoid
- distributes over +

$$a \cdot (a_1 + a_2) = (a \cdot a_1) + (a \cdot a_2)$$

▶ $0 \cdot a = 0$ for all $a \in A$

Examples: $(\mathbb{N}, +, \cdot, 0, 1)$ and $(\mathbb{Q}, +, \cdot, 0, 1)$

Semiring

Definition

A commutative semiring is an algebraic structure $\mathcal{A} = (A, +, \cdot, 0, 1)$

- (A, +, 0) commutative monoid
- $(A, \cdot, 1)$ commutative monoid
- distributes over +

$$a \cdot (a_1 + a_2) = (a \cdot a_1) + (a \cdot a_2)$$

• $0 \cdot a = 0$ for all $a \in A$

Examples: $(\mathbb{N}, +, \cdot, 0, 1)$ and $(\mathbb{Q}, +, \cdot, 0, 1)$

Definition

A commutative semifield is a commutative semiring $\mathcal{A} = (A, +, \cdot, 0, 1)$

▶ for all $a \in A \setminus \{0\}$ there exists $a^{-1} \in A$ with $a \cdot a^{-1} = 1$

Example: $(\mathbb{Q}, +, \cdot, 0, 1)$

A. Maletti and D. Quernheim

A. Maletti and D. Quernheim

Syntax

Definition

Weighted tree automaton (WTA) is tuple (Q, Σ, A, F, μ) where

▶ finite set Q

 $\blacktriangleright F \subseteq Q$

- ranked alphabet Σ
- commutative semiring $\mathcal{A} = (A, +, \cdot, 0, 1)$

states input symbols weight structure final states

A. Maletti and D. Quernheim

Syntax

Definition

Weighted tree automaton (WTA) is tuple (Q, Σ, A, F, μ) where

- finite set Q
- ranked alphabet Σ
- commutative semiring $\mathcal{A} = (A, +, \cdot, 0, 1)$

• $F \subseteq Q$

• $\mu = (\mu_k)_{k \in \mathbb{N}}$ with $\mu_k \colon \Sigma_k \to A^{\mathcal{Q} \times \mathcal{Q}^k}$

states input symbols weight structure final states weighted transitions

A. Maletti and D. Quernheim

Hyper-minimization for deterministic WTA

Syntax

Definition

Weighted tree automaton (WTA) is tuple (Q, Σ, A, F, μ) where

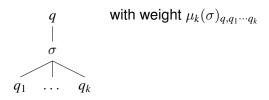
- finite set Q
- ranked alphabet Σ
- commutative semiring $\mathcal{A} = (A, +, \cdot, 0, 1)$

•
$$F \subseteq Q$$

•
$$\mu = (\mu_k)_{k \in \mathbb{N}}$$
 with $\mu_k \colon \Sigma_k \to A^{Q \times Q^k}$

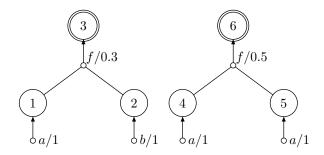
states input symbols weight structure final states weighted transitions

Sample Transition



Syntax — Illustration

Sample Automaton



Hyper-minimization for deterministic WTA

Semantics

Definition Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

▶ Run on *t*: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$

Semantics

Definition Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

- ▶ Run on *t*: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$
- ► Weight of r

$$\operatorname{wt}(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(t(w))_{r(w), r(w1) \cdots r(wk)}$$

Semantics

Definition Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

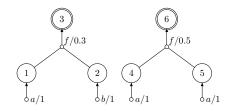
- ▶ Run on *t*: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$
- ▶ Weight of r

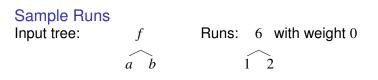
$$\operatorname{wt}(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(t(w))_{r(w), r(w1) \cdots r(wk)}$$

Recognized weighted tree language

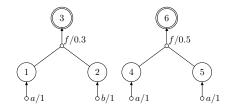
$$\|M\|(t) = \sum_{\substack{r \text{ run on } t\\r(\varepsilon) \in F}} \operatorname{wt}(r)$$

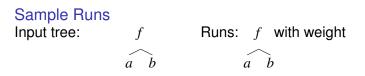
Sample Automaton





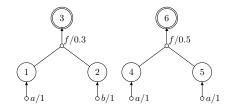
Sample Automaton

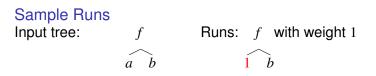




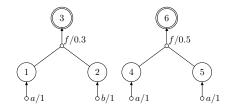
A. Maletti and D. Quernheim

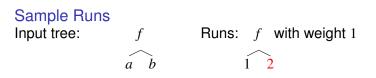
Sample Automaton



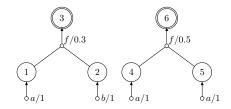


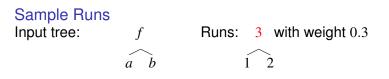
Sample Automaton





Sample Automaton





A. Maletti and D. Quernheim

Definition Deterministic WTA: for every $\sigma \in \Sigma_k$ and $w \in Q^k$ there exists exactly one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq 0$

Definition Deterministic WTA: for every $\sigma \in \Sigma_k$ and $w \in Q^k$ there exists exactly one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq 0$

Notes

Deterministic WTA does not use addition

Definition Deterministic WTA: for every $\sigma \in \Sigma_k$ and $w \in Q^k$ there exists exactly one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq 0$

Notes

- Deterministic WTA does not use addition
- Recognizable \neq deterministically recognizable

Definition Deterministic WTA: for every $\sigma \in \Sigma_k$ and $w \in Q^k$ there exists exactly one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq 0$

Notes

- Deterministic WTA does not use addition
- ► Recognizable ≠ deterministically recognizable
- Determinization possible in locally-finite semirings

[Borchardt, Vogler 2003]

Definition Deterministic WTA: for every $\sigma \in \Sigma_k$ and $w \in Q^k$ there exists exactly one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq 0$

Notes

- Deterministic WTA does not use addition
- Determinization possible in locally-finite semirings
 - [Borchardt, Vogler 2003]
- Partial determinization for probabilities
- Systematic presentation

[May, Knight 2006]

[Büchse, Vogler 2009]

Assumption

We assume a commutative semifield $\mathcal{A} = (A, +, \cdot, 0, 1)$

equivalent = same recognized weighted tree language

Problem

Given deterministic WTA, return

- equivalent deterministic WTA such that
- no equivalent deterministic WTA is smaller

equivalent = same recognized weighted tree language

Problem Given deterministic WTA, return

- equivalent deterministic WTA
- minimal

equivalent = same recognized weighted tree language

Problem Given deterministic WTA, return

- equivalent deterministic WTA
- minimal

Theorem (M., Q. 2011)

Minimization of deterministic WTA can be done in time $O(m \log n)$

- m = size of automaton
- n = number of states

context = tree with exactly one occurrence of special symbol \Box c[t] = tree obtained from context c by replacing \Box by t

Definition

States *p* and *q* are equivalent if there exists $a \in A \setminus \{0\}$ such that

$$||M||(c[p]) = a \cdot ||M||(c[q])$$

for all contexts $c \in C_{\Sigma}$

context = tree with exactly one occurrence of special symbol \Box c[t] = tree obtained from context c by replacing \Box by t

Definition

States *p* and *q* are equivalent if there exists $a \in A \setminus \{0\}$ such that

$$||M||(c[p]) = a \cdot ||M||(c[q])$$

for all contexts $c \in C_{\Sigma}$

Theorem (Borchardt 2003)

Definition

Languages L and L' almost equal if L and L' have finite difference

Problem [Badr et al. 2009]

Given DFA, return

- DFA recognizing almost equal language such that
- no smaller DFA recogizes an almost equal language

 $(L \setminus L') \cup (L' \setminus L)$

Definition

Languages L and L' almost equal if L and L' have finite difference

Problem [Badr et al. 2009]

Given DFA, return

- DFA recognizing almost equal language
- hyper-minimal

 $(L \setminus L') \cup (L' \setminus L)$

Definition

Languages L and L' almost equal if L and L' have finite difference

Problem [Badr et al. 2009]

Given DFA, return

- DFA recognizing almost equal language
- hyper-minimal

Theorem (Holzer, M. 2009, Gawrychowsky, Jeż 2009) DFA hyper-minimization can be done in time $O(n \log n)$

 $(L \setminus L') \cup (L' \setminus L)$

Weighted hyper-minimization

$$\operatorname{supp}(\tau) = \{t \in T_{\Sigma} \mid \tau(t) \neq 0\} \text{ for } \tau \colon T_{\Sigma} \to A$$

Three variants

Two weighted tree languages $\tau_1, \tau_2 \colon T_{\Sigma} \to A$ are almost equal if

• $supp(\tau_1)$ and $supp(\tau_2)$ are almost equal

reduces to the unweighted case

Weighted hyper-minimization

$$\operatorname{supp}(\tau) = \{t \in T_{\Sigma} \mid \tau(t) \neq 0\} \text{ for } \tau \colon T_{\Sigma} \to A$$

Three variants

Two weighted tree languages $\tau_1, \tau_2 \colon T_{\Sigma} \to A$ are almost equal if

• $supp(\tau_1)$ and $supp(\tau_2)$ are almost equal

reduces to the unweighted case

• $\{t \in T_{\Sigma} \mid \tau_1(t) \neq \tau_2(t)\}$ finite

$$\operatorname{supp}(\tau) = \{t \in T_{\Sigma} \mid \tau(t) \neq 0\} \text{ for } \tau \colon T_{\Sigma} \to A$$

Three variants

Two weighted tree languages $\tau_1, \tau_2 \colon T_{\Sigma} \to A$ are almost equal if

• supp (τ_1) and supp (τ_2) are almost equal

reduces to the unweighted case

- $\{t \in T_{\Sigma} \mid \tau_1(t) \neq \tau_2(t)\}$ finite
- $\sum_{t \in T_{\Sigma}} d(\tau_1(t), \tau_2(t)) \le n$ for some distance d and $n \in \mathbb{N}$

difficult

$$\operatorname{supp}(\tau) = \{t \in T_{\Sigma} \mid \tau(t) \neq 0\} \text{ for } \tau \colon T_{\Sigma} \to A$$

Three variants

Two weighted tree languages $\tau_1, \tau_2 \colon T_{\Sigma} \to A$ are almost equal if

• $supp(\tau_1)$ and $supp(\tau_2)$ are almost equal

reduces to the unweighted case

- $\{t \in T_{\Sigma} \mid \tau_1(t) \neq \tau_2(t)\}$ finite
- $\sum_{t \in T_{\Sigma}} d(\tau_1(t), \tau_2(t)) \le n$ for some distance d and $n \in \mathbb{N}$

difficult

$$\operatorname{supp}(\tau) = \{t \in T_{\Sigma} \mid \tau(t) \neq 0\} \text{ for } \tau \colon T_{\Sigma} \to A$$

Three variants

Two weighted tree languages $\tau_1, \tau_2 \colon T_{\Sigma} \to A$ are almost equal if

• supp (τ_1) and supp (τ_2) are almost equal

reduces to the unweighted case

- $\{t \in T_{\Sigma} \mid \tau_1(t) \neq \tau_2(t)\}$ finite \leftarrow discussed here
 - $\sum_{t \in T_{\Sigma}} d(\tau_1(t), \tau_2(t)) \le n$ for some distance d and $n \in \mathbb{N}$

difficult

Definition

Two weighted tree languages τ_1 and τ_2 are almost equal if

$$\tau_1(t) = \tau_2(t)$$

for almost all $t \in T_{\Sigma}$

Definition

States *p* and *q* are almost equivalent if there exists $a \in A \setminus \{0\}$ such that

```
\|M\|(c[p])=a\cdot\|M\|(c[q])
```

for almost all contexts $c \in C_{\Sigma}$

Definition

States *p* and *q* are almost equivalent if there exists $a \in A \setminus \{0\}$ such that

```
\|M\|(c[p]) = a \cdot \|M\|(c[q])
```

for almost all contexts $c \in C_{\Sigma}$

Definition

- q-run = non-zero weighted run with root label q
- preamble state q = finitely many q-runs

Definition

States *p* and *q* are almost equivalent if there exists $a \in A \setminus \{0\}$ such that

```
\|M\|(c[p]) = a \cdot \|M\|(c[q])
```

for almost all contexts $c \in C_{\Sigma}$

Definition

- q-run = non-zero weighted run with root label q
- preamble state q = finitely many q-runs

Theorem

A minimal deterministic WTA is hyper-minimal

 no pair of different, but almost equivalent states of which one is a preamble state

A. Maletti and D. Quernheim

Algorithm

Hyper-minimization algorithm

1.	Minimize	$\mathcal{O}(m\log n)$
2.	Compute preamble states	$\mathcal{O}(m)$
3.	Compute co-preamble states	$\mathcal{O}(m)$
4.	Identify almost equivalent states	$\mathcal{O}(m\log n)$
5.	Merge preamble states that are almost equivalent to another state	
		$\mathcal{O}(m)$

Hyper-minimization algorithm

1.	Minimize	$\mathcal{O}(m\log n)$
2.	Compute preamble states	$\mathcal{O}(m)$
3.	Compute co-preamble states	$\mathcal{O}(m)$
4.	Identify almost equivalent states	$\mathcal{O}(m\log n)$
5.	Merge preamble states that are almost equivalent to another state	
		$\mathcal{O}(m)$

Definition Co-preamble state q = finitely many $c \in C_{\Sigma}$ such that $||M||(c[q]) \neq 0$

Hyper-minimization algorithm

1.	Minimize	$\mathcal{O}(m\log n)$
2.	Compute preamble states	$\mathcal{O}(m)$
3.	Compute co-preamble states	$\mathcal{O}(m)$
4.	Identify almost equivalent states	$\mathcal{O}(m\log n)$
5.	Merge preamble states that are almost equivalent to another state	
		$\mathcal{O}(m)$

Definition Co-preamble state q = finitely many $c \in C_{\Sigma}$ such that $||M||(c[q]) \neq 0$

Identification of almost equivalent states

Definition Transition context *c* is of the shape $\sigma(t_1, \ldots, t_k)$ with

- $t_1,\ldots,t_k\in Q\cup\{\Box\}$
- ► exactly one □ occurs

Identification of almost equivalent states

Definition Transition context *c* is of the shape $\sigma(t_1, \ldots, t_k)$ with

- $t_1,\ldots,t_k\in Q\cup\{\Box\}$
- ► exactly one □ occurs

Assumptions

total order on transition contexts

Identification of almost equivalent states

Definition Transition context *c* is of the shape $\sigma(t_1, \ldots, t_k)$ with

- ► $t_1, \ldots, t_k \in Q \cup \{\Box\}$
- exactly one
 occurs

Assumptions

- total order on transition contexts
- c_q smallest transition context such that c_q[q] evaluates to a co-kernel (i.e., not a co-preamble) state for each q ∈ Q

Definition Signature of *q*: $\{\langle c, q', a' \rangle | \cdots \}$

- c = transition context
- ▶ q' = evaluation of c[q]
- ► a' = transition weight of c[q]

Definition Signature of q: { $\langle c, q', a' \rangle | \cdots$ }

- c = transition context
- ▶ q' = evaluation of c[q]
- ► a' = transition weight of c[q]

Definition

Standardized signature of q: { $\langle c, q', a' \rangle \mid q'$ co-kernel state, \cdots }

- c = transition context
- ▶ q' = evaluation of c[q]
- ► a' = transition weight of c[q] "divided by" transition weight of $c_q[q]$

Lemma

If two states have the same signature, then they are almost equivalent

Lemma

If two states have the same signature, then they are almost equivalent

Lemma If two different states are almost equivalent, then there exist two different states that have the same signature

Finding almost equivalent states

Approach

- 1. Find two different states of equal signature
- 2. Merge them

using a scaling factor

3. Go to 1.

This will merge more states than desired, but identifies almost equivalent states

23

Hyper-minimization algorithm

1.	Minimize	$\mathcal{O}(m\log n)$
2.	Compute preamble states	$\mathcal{O}(m)$
3.	Compute co-preamble states	$\mathcal{O}(m)$
4.	Identify almost equivalent states	$\mathcal{O}(m\log n)$
5.	Merge preamble states that are almost equivalent to another state	
		$\mathcal{O}(m)$

Hyper-minimization algorithm

Theorem We can hyper-minimize deterministic WTA in time $O(m \log n)$

Summary

Solved

- hyper-minimization for deterministic WTA over semifields
- almost equality = finitely many trees with different weight

Open

- Error optimization
- Stronger "almost equality"
- Avoiding requirements (semifield; commutativity; determinism; etc.)

Thank you!

References

- 1. Badr, Geffert, Shipman: Hyper-minimizing minimized deterministic finite state automata. ITA 43, 2009
- 2. Borchardt: The Myhill-Nerode theorem for recognizable tree series. Proc. DLT 2003
- 3. Borchardt, Vogler: Determinization of finite state weighted tree automata. JALC 8, 2003
- 4. Büchse, May, Vogler: Determinization of weighted tree automata using factorizations. JALC 15, 2010
- 5. Gawrychowski, Jeż: Hyper-minimisation made efficient. Proc. MFCS 2009
- Holzer, Maletti: An n log n algorithm for hyper-minimizing states in a (minimized) deterministic automaton. Proc. CIAA 2009
- 7. Maletti, Quernheim: Pushing for weighted tree automata. Proc. MFCS 2011
- 8. May, Knight: A better n-best list: practical determinization of weighted finite tree automata. Proc. HLT-NAACL 2006

A. Maletti and D. Quernheim