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Overview

Weighted Tree Language

I Assigns weight (e.g. a probability) to each tree
I Weight drawn from commutative semiring; e.g. (Q,+, ·, 0, 1)

Weighted Tree Automaton

I Finitely represents weighted tree language
I Defines the recognizable weighted tree languages

Application

I Re-ranker for parse trees
I Representation of parses large models
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Basics
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Semiring

Definition
A commutative semiring is an algebraic structure A = (A,+, ·, 0, 1)

I (A,+, 0) commutative monoid
I (A, ·, 1) commutative monoid
I · distributes over + a · (a1 + a2) = (a · a1) + (a · a2)

I 0 · a = 0 for all a ∈ A

Examples: (N,+, ·, 0, 1) and (Q,+, ·, 0, 1)

Definition
A commutative semifield is a commutative semiring A = (A,+, ·, 0, 1)

I for all a ∈ A \ {0} there exists a−1 ∈ A with a · a−1 = 1

Example: (Q,+, ·, 0, 1)
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Syntax
Definition
Weighted tree automaton (WTA) is tuple (Q,Σ,A,F, µ) where
I finite set Q states
I ranked alphabet Σ input symbols
I commutative semiring A = (A,+, ·, 0, 1) weight structure
I F ⊆ Q final states

I µ = (µk)k∈N with µk : Σk → AQ×Qk
weighted transitions

Sample Transition

q

σ

q1 . . . qk

with weight µk(σ)q,q1···qk
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Syntax — Illustration

Sample Automaton

3 6

1 2 4 5

f/0.5f/0.3

a/1 b/1 a/1 a/1
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Semantics

Definition
Let t ∈ TΣ(Q) and W = pos(t).
I Run on t: map r : W → Q with r(w) = t(w) if t(w) ∈ Q

I Weight of r
wt(r) =

∏
w∈W

t(w)∈Σ

µk(t(w))r(w),r(w1)···r(wk)

I Recognized weighted tree language

‖M‖(t) =
∑

r run on t
r(ε)∈F

wt(r)
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Semantics — Illustration

Sample Automaton

3 6

1 2 4 5

f/0.5f/0.3

a/1 b/1 a/1 a/1

Sample Runs
Input tree: f

a b

Runs: 6

1 2

with weight 0
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Semantics — Illustration

Sample Automaton

3 6

1 2 4 5

f/0.5f/0.3

a/1 b/1 a/1 a/1

Sample Runs
Input tree: f

a b

Runs: 3

1 2

with weight 0.3
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Determinism

Definition
Deterministic WTA: for every σ ∈ Σk and w ∈ Qk there exists exactly
one q ∈ Q such that µk(σ)q,w 6= 0

Notes

I Deterministic WTA does not use addition
I Recognizable 6= deterministically recognizable
I Determinization possible in locally-finite semirings

[Borchardt, Vogler 2003]
I Partial determinization for probabilities [May, Knight 2006]
I Systematic presentation [Büchse, Vogler 2009]
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Hyper-minimization
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Assumption

We assume a commutative semifield A = (A,+, ·, 0, 1)
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Minimization

equivalent = same recognized weighted tree language

Problem
Given deterministic WTA, return
I equivalent deterministic WTA such that
I no equivalent deterministic WTA is smaller

Theorem (M., Q. 2011)
Minimization of deterministic WTA can be done in time O(m log n)

I m = size of automaton
I n = number of states
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Minimization

context = tree with exactly one occurrence of special symbol �
c[t] = tree obtained from context c by replacing � by t

Definition
States p and q are equivalent if there exists a ∈ A \ {0} such that

‖M‖(c[p]) = a · ‖M‖(c[q])

for all contexts c ∈ CΣ

Theorem (Borchardt 2003)
A trim deterministic WTA is minimal
⇐⇒ no pair of different, but equivalent states
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Hyper-minimization

Definition
Languages L and L′ almost equal if L and L′ have finite difference

(L \ L′) ∪ (L′ \ L)

Problem [Badr et al. 2009]
Given DFA, return
I DFA recognizing almost equal language such that
I no smaller DFA recogizes an almost equal language

Theorem (Holzer, M. 2009, Gawrychowsky, Jeż 2009)
DFA hyper-minimization can be done in time O(n log n)
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Weighted hyper-minimization

supp(τ) = {t ∈ TΣ | τ(t) 6= 0} for τ : TΣ → A

Three variants
Two weighted tree languages τ1, τ2 : TΣ → A are almost equal if
I supp(τ1) and supp(τ2) are almost equal

reduces to the unweighted case

I {t ∈ TΣ | τ1(t) 6= τ2(t)} finite

← discussed here

I
∑

t∈TΣ
d(τ1(t), τ2(t)) ≤ n for some distance d and n ∈ N

difficult
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Weighted hyper-minimization

Definition
Two weighted tree languages τ1 and τ2 are almost equal if

τ1(t) = τ2(t)

for almost all t ∈ TΣ
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Weighted hyper-minimization

Definition
States p and q are almost equivalent if there exists a ∈ A \ {0} such that

‖M‖(c[p]) = a · ‖M‖(c[q])

for almost all contexts c ∈ CΣ

Definition
I q-run = non-zero weighted run with root label q
I preamble state q = finitely many q-runs

Theorem
A minimal deterministic WTA is hyper-minimal
⇐⇒ no pair of different, but almost equivalent states

of which one is a preamble state
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Algorithm
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Overview

Hyper-minimization algorithm

1. Minimize O(m log n)

2. Compute preamble states O(m)

3. Compute co-preamble states O(m)

4. Identify almost equivalent states O(m log n)

5. Merge preamble states that are almost equivalent to another state
O(m)

Definition
Co-preamble state q = finitely many c ∈ CΣ such that ‖M‖(c[q]) 6= 0
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Identification of almost equivalent states

Definition
Transition context c is of the shape σ(t1, . . . , tk) with
I t1, . . . , tk ∈ Q ∪ {�}
I exactly one � occurs

Assumptions

I total order on transition contexts

I cq smallest transition context such that cq[q] evaluates to a
co-kernel (i.e., not a co-preamble) state
for each q ∈ Q
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Signature

Definition
Signature of q:

{
〈c, q′, a′〉 | · · ·

}
I c = transition context
I q′ = evaluation of c[q]

I a′ = transition weight of c[q]

Definition
Standardized signature of q:

{
〈c, q′, a′〉 | q′ co-kernel state, · · ·

}
I c = transition context
I q′ = evaluation of c[q]

I a′ = transition weight of c[q] “divided by” transition weight of cq[q]
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Signature

Lemma
If two states have the same signature, then they are almost equivalent

Lemma
If two different states are almost equivalent,
then there exist two different states that have the same signature
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Finding almost equivalent states

Approach

1. Find two different states of equal signature
2. Merge them using a scaling factor
3. Go to 1.

This will merge more states than desired,
but identifies almost equivalent states
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Overview

Hyper-minimization algorithm

1. Minimize O(m log n)

2. Compute preamble states O(m)

3. Compute co-preamble states O(m)

4. Identify almost equivalent states O(m log n)

5. Merge preamble states that are almost equivalent to another state
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Hyper-minimization algorithm

Theorem
We can hyper-minimize deterministic WTA in time O(m log n)
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Summary

Solved
I hyper-minimization for deterministic WTA over semifields
I almost equality = finitely many trees with different weight

Open

I Error optimization
I Stronger “almost equality”
I Avoiding requirements

(semifield; commutativity; determinism; etc.)
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Thank you!
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