Applications of Tree Automata Theory Lecture VI: Back to Machine Translation

Andreas Maletti

Institute of Computer Science Universität Leipzig, Germany

on leave from: Institute for Natural Language Processing Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Yekaterinburg — August 25, 2014

Roadmap

- Theory of Tree Automata
- 2 Parsing Basics and Evaluation
- 3 Parsing Advanced Topics
- 4 Machine Translation Basics and Evaluation
- 5 Theory of Tree Transducers
- 6 Machine Translation Advanced Topics

Always ask questions right away!

Important relations

- SCFG = synchronous context-free grammar LTG-LTG [CHIANG, 2007] (synchronous local tree grammar) ⊆ In-TOP special top-down tree transducer
- STSG = synchronous tree substitution grammar TSG-TSG [EISNER, 2003] ⊂ In-XTOP special extended top-down tree transducer
- STAG = synchronous tree adjunction grammar TAG-TAG [SHIEBER, SCHABES, 1990]
- SCFTG = synchronous context-free tree grammar [NEDERHOF, VOGLER, 2012]
 CFTG-CFTG

Towards asymetric relations

- STSSG = synch. tree-sequence substitution grammar [ZHANG et al., 2008]
 TSSG-TSSG
- *ℓ*MBOT = local shallow multi bottom-up tree transducer
 [BRAUNE et al., 2013]
 LTG-TSSG

In-XMBOT corresponds rougly to RTG-TSSG

Lecture VI: Tree Transducers in SMT

NP NP <u>9⊪</u> h him	b <u>q</u> ₅ in	\$kI	a.way
mDHk ^{q_{mDHk} funny}	w <u>q</u> w	And	Aly $\stackrel{q_{Aly}}{=}$ at
kAnA ^{q<u>kan</u>a they}	. were	ynZrAn	^{q_{ynZrAn} looking}

NP NP <u>q⊪</u> b <u>q</u> ь in h him	\$kI ^q ‱ a.way
mDHk ^{q_{mDHk} funny w ^qw}	And Aly $\frac{q_{Aly}}{-}$ at
NP-SBJ kAnA ^q kAnA . were they	ynZrAn ^{q_{ynZrAn} looking}

Extracted rules

Synchronous grammar notation:

Tree transducer notation (links expressed by variables):

Definition (Alternative for linear XMBOT)

Linear extended multi bottom-up tree transducer (Q, Σ, Δ, I, R)

- finite set Q
- alphabets Σ and Δ
- $I \subseteq Q$
- finite set $R \subseteq T_{\Sigma}(Q) \times Q \times T_{\Delta}(Q)^*$
 - each $q \in Q$ occurs at most once in ℓ
 - each $q \in Q$ that occurs in \vec{r} also occurs in ℓ

initial states

input/output symbols

states

Evaluation of XMBOT

Implementation [BRAUNE et al., 2013]

- shallow *ℓ*MBOT implemented in MOSES framework [KOEHN et al., 2007]
- variant of the syntax-based component

[HOANG et al., 2009]

Implementation [BRAUNE et al., 2013]

- shallow *l*MBOT implemented in MOSES framework [KOEHN et al., 2007]
- variant of the syntax-based component

[HOANG et al., 2009]

- hard- and soft-matching available
- incl. optimizations like cube pruning

Evaluation

English-to-German WMT 2009 translation task

 4th version EUROPARL and news commentary (approx. 1.5 million sentence pairs)

System	BLEU-4	constrained?
University of Edinburgh (winner)	15.2	×
GOOGLE	14.7	×
University of Stuttgart	12.5	×
Moses (SCFG) tree-to-tree	12.6	1
ℓMBOT tree-to-tree	13.1	✓

Example

*l***MBOT translation**

Evaluation [POPOVA, 2014]

Russian-to-English WMT'13 translation task

YANDEX corpus (approx. 1 million sentence pairs)

System	BLEU-4
winner [PINO et al., 2013]	25.9
(hierarchical phrase-based)	
hierarchical phrase-based	21.9
<pre>ℓMBOT string-to-tree</pre>	20.7
string-to-tree	19.8

Definition (One-symbol normal form)

XMBOT $(Q, \Sigma, \Delta, I, R)$ in one-symbol normal form if ℓ contains at most one (occurrence of a) symbol of Σ

for all $(\ell, q, \vec{r}) \in R$

Definition (One-symbol normal form)

XMBOT (*Q*, Σ, Δ, *I*, *R*) in one-symbol normal form if ℓ contains at most one (occurrence of a) symbol of Σ for all (ℓ , *q*, \vec{r}) $\in R$

Theorem [ENGELFRIET et al., 2009]

For every XMBOT there exists an equivalent XMBOT in one-symbol normal form

Transformation into one-symbol normal form

Linear-time procedure

Lecture VI: Tree Transducers in SMT

Implementation

- is often a weighted tree automaton
- yields an (unambiguous) weighted tree automaton for the parses of the input sentence
- efficient representation of $L: T_{\Sigma} \to \mathbb{R}_{\geq 0}$

Implementation

- is often a weighted tree automaton
- yields an (unambiguous) weighted tree automaton for the parses of the input sentence
- efficient representation of $L: T_{\Sigma} \to \mathbb{R}_{\geq 0}$

Approach

- we can intersect all (weighted) parses with our translation model (XMBOT)
- improved stability under parse errors (but only at decode)

Definition (Input product)

1 weighted translation $\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ 2 weighted language $p: \Sigma^* \to \mathbb{R}_{\geq 0}$ (language model) $_{\rho}\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ $(t, u) \mapsto \tau(t, u) \cdot p(yd(t))$

Definition (Input product)

1 weighted translation $\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ 2 weighted tree language $L: T_{\Sigma} \to \mathbb{R}_{\geq 0}$ (parses) $_{L}\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ $(t, u) \mapsto \tau(t, u) \cdot L(t)$

Definition (Input product)

1 weighted translation $\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ 2 weighted tree language $L: T_{\Sigma} \to \mathbb{R}_{\geq 0}$ (parses) $_L \tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ $(t, u) \mapsto \tau(t, u) \cdot L(t)$

Theorem [~, 2011]

... product of wXMBOT M with ... is

side	w A A	wTA A
input	$\mathcal{O}(\pmb{M} \cdot \pmb{A} ^3)$	$\mathcal{O}(\pmb{M} \cdot \pmb{A})$
output	$\mathcal{O}(M \cdot A ^{2\operatorname{rk}(M)+2})$	$\mathcal{O}(M \cdot A ^{rk(M)})$

Definition (Input product)

1 weighted translation
$$\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$$

2 weighted tree language $L: T_{\Sigma} \to \mathbb{R}_{\geq 0}$ (parses)
 $_{L}\tau: T_{\Sigma} \times T_{\Delta} \to \mathbb{R}_{\geq 0}$ $(t, u) \mapsto \tau(t, u) \cdot L(t)$

Theorem [~, 2011]

... product of wXMBOT M with ... is

side	w A A	wTA A
input	$\mathcal{O}(\pmb{M} \cdot \pmb{A} ^3)$	$\mathcal{O}(\pmb{M} \cdot \pmb{A})$
output	$\mathcal{O}(M \cdot A ^{2\operatorname{rk}(M)+2})$	$\mathcal{O}(M \cdot A ^{rk(M)})$

Example (Input product)

Implementation [QUERNHEIM, 2014]

 exactly computes a wTA representing the derivations for the first two models

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Disadvantages

2 language model not integrated

(needs strict structure)

Implementation [QUERNHEIM, 2014]

- exactly computes a wTA representing the derivations for the first two models
- 2 extracts the *k*-best derivations
- reranks them by the language model (i.e., multiplies their score with the LM score and resorts)

Disadvantages

- 1 s...l...o...w
- 2 language model not integrated
- 3 strictness \rightarrow coverage problems

(needs strict structure)

Evaluation

- English-to-German
- 7th EUROPARL, news commentary, and Common crawl (approx. 1.8–4 million sentence pairs)

System	BLEU-4	
	WMT'13	WMT'14
winner	20.8	21.0
Moses (SCFG) tree-to-tree	13.1	_
ExactMBOT tree-to-tree	16.2	17.0
Moses (SCFG) string-to-tree	14.7	—
<pre>ℓMBOT string-to-tree</pre>	15.5	—
Moses phrase-based	17.5	—

Tree Transducers in Machine Translation

Composition

■
$$au_1$$
; $au_2 = \{(s, u) \mid \exists t : (s, t) \in au_1, (t, u) \in au_2\}$

support modular development

allow integration of external knowledge sources

Question

given a class C of transformations, is there $n \in \mathbb{N}$ such that

$$\mathcal{C}^n = \bigcup_{k \ge 1} \mathcal{C}^k$$

$$\mathcal{C}^k = \mathcal{C}; \cdots; \mathcal{C}$$

k times

	I-TOP	I-XTOP	I-XMBOT
ε -free, strict, nondeleting	1		1
ε -free, strict	2		1
arepsilon-free	2		1
otherwise (without delabeling)	2		1

	I-TOP	I-XTOP	I-XMBOT
ε -free, strict, nondeleting	1	2	1
ε -free, strict	2	?	1
arepsilon-free	2	?	1
otherwise (without delabeling)	2	?	1

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem [FÜLÖP, ~, 2013]

switch delabeling from back to front:

 $\mathsf{le[s]}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \text{ ; } \mathsf{l[s]d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \subseteq \mathsf{le[s]}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subseteq \mathsf{l[s]d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \text{ ; } \mathsf{lesn}\mathsf{-}\mathsf{XTOP}$

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem [FÜLÖP, ~, 2013]

switch delabeling from back to front:

 $\mathsf{le[s]-XTOP^R} ; \mathsf{l[s]d-TOP^R} \subseteq \mathsf{le[s]-XTOP^R} \subseteq \mathsf{l[s]d-TOP^R} ; \mathsf{lesn-XTOP}$

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem [FÜLÖP, ~, 2013]

switch delabeling from back to front:

 $\mathsf{le}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \text{ ; } \mathsf{l}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \subseteq \mathsf{le}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subseteq \mathsf{l}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \text{ ; } \mathsf{le}_{\textbf{sn}}\mathsf{-}\mathsf{XTOP}^\mathsf{R}$

Notes

other transducer becomes strict and nondeleting

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem [FÜLÖP, ~, 2013]

switch delabeling from back to front:

 $\mathsf{le}[s]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \text{ ; } \mathsf{l}[s]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \subseteq \mathsf{le}[s]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subseteq \mathsf{l}[s]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \text{ ; } \mathsf{lesn}\mathsf{-}\mathsf{XTOP}$

Notes

- other transducer becomes strict and nondeleting
- other transducer loses look-ahead

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem

$(\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^n \subseteq \mathsf{I}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^{\mathsf{R}}$; $\mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \subseteq (\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^3$

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem

$$(\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^n \subseteq \mathsf{I}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^{\mathsf{R}}$$
; $\mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \subseteq (\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^3$

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem

 $(\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^n \subseteq \mathsf{I}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^{\mathsf{R}}$; $\mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \subseteq (\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^3$

$$(le[s]-XTOP^R)^{n+1}$$

 $\subseteq le[s]-XTOP^R$; $l[s]d-TOP^R$; $lesn-XTOP^2$
 \subseteq

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem

 $(\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^n \subseteq \mathsf{I}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^{\mathsf{R}}$; $\mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \subseteq (\mathsf{Ie}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^3$

$$(le[s]-XTOP^{R})^{n+1}$$

 $\subseteq le[s]-XTOP^{R}$; $l[s]d-TOP^{R}$; $lesn-XTOP^{2}$
 $\subseteq l[s]d-TOP^{R}$; $lesn-XTOP^{3}$
 \subseteq

 $e = \varepsilon$ -free; d = delabeling s = strict; n = nondeleting

Theorem

 $(\mathsf{le}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^n \subseteq \mathsf{l}[\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^{\mathsf{R}}$; $\mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \subseteq (\mathsf{le}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^{\mathsf{R}})^3$

Proof.

 $(le[s]-XTOP^{R})^{n+1}$ $\subseteq le[s]-XTOP^{R}$; $l[s]d-TOP^{R}$; $lesn-XTOP^{2}$ $\subseteq l[s]d-TOP^{R}$; $lesn-XTOP^{3}$ $\subseteq l[s]d-TOP^{R}$; $lesn-XTOP^{2}$

Corollary

$\mathsf{le}[s]\mathsf{-}\mathsf{XTOP}^n \subseteq \mathsf{QR}$; $\mathsf{l}[s]\mathsf{d}\mathsf{-}\mathsf{TOP}$; $\mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \subseteq \mathsf{le}[s]\mathsf{-}\mathsf{XTOP}^4$

Corollary

le[s]-XTOPⁿ \subseteq QR ; l[s]d-TOP ; lesn-XTOP² \subseteq le[s]-XTOP⁴

Proof.

uses only standard encoding of look-ahead

	I-TOP	le-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	
strict	2	
look-ahead	1	
	2	

	I-TOP	le-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	
strict	2	
look-ahead	1	≤ 3
	2	<u>≤</u> 4

Theorem

delabeling homomorphism moving from front to back:

 $\mathsf{Isd}\mathsf{-}\mathsf{HOM} \ ; \ \mathsf{les}\mathsf{-}\mathsf{XTOP} \subseteq \mathsf{les}\mathsf{-}\mathsf{XTOP} \subseteq \mathsf{lesn}\mathsf{-}\mathsf{XTOP} \ ; \ \mathsf{Isd}\mathsf{-}\mathsf{HOM}$

Theorem

delabeling homomorphism moving from front to back:

 $\mathsf{Isd}\text{-}\mathsf{HOM}$; $\mathsf{les}\text{-}\mathsf{XTOP} \subseteq \mathsf{les}\text{-}\mathsf{XTOP}$; $\mathsf{Isd}\text{-}\mathsf{HOM}$

Notes

Theorem

delabeling homomorphism moving from front to back:

 $\mathsf{Isd}\mathsf{-HOM}$; $\mathsf{les}\mathsf{-XTOP} \subseteq \mathsf{les}\mathsf{-XTOP} \subseteq \mathsf{les}\mathsf{n}\mathsf{-}\mathsf{XTOP}$; $\mathsf{Isd}\mathsf{-HOM}$

Notes

other transducer becomes nondeleting

Theorem

delabeling homomorphism moving from front to back:

 $\mathsf{Isd}\mathsf{-}\mathsf{HOM} \text{ ; } \mathsf{les}\mathsf{-}\mathsf{XTOP} \subseteq \mathsf{les}\mathsf{-}\mathsf{XTOP} \text{ ; } \mathsf{lsd}\mathsf{-}\mathsf{HOM}$

Notes

- other transducer becomes nondeleting
- other transducer needs to be strict and have no look-ahead

Theorem

$(\text{les-XTOP}^{\mathsf{R}})^n \subseteq \text{lesn-XTOP}$; $\text{les-XTOP} \subseteq \text{les-XTOP}^2$

Theorem

$$(\text{les-XTOP}^{R})^{n} \subseteq \text{lesn-XTOP}$$
; $\text{les-XTOP} \subseteq \text{les-XTOP}^{2}$

Proof.

$(\mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n$; $\mathsf{les}\mathsf{-}\mathsf{XTOP}$ \subseteq \subseteq \subseteq \subseteq \subseteq

Theorem

$$(\text{les-XTOP}^{R})^{n} \subseteq \text{lesn-XTOP}$$
; $\text{les-XTOP} \subseteq \text{les-XTOP}^{2}$

Proof.

$(\text{les-XTOP}^{R})^{n+1} \subseteq (\text{les-XTOP}^{R})^{n}$; les-XTOP \subseteq lesn-XTOP ; lsd-HOM ; les-XTOP² \subseteq \subseteq \subseteq

Theorem

$$(\text{les-XTOP}^{R})^{n} \subseteq \text{lesn-XTOP}$$
; $\text{les-XTOP} \subseteq \text{les-XTOP}^{2}$

```
(\text{les-XTOP}^{R})^{n+1} \subseteq (\text{les-XTOP}^{R})^{n}; les-XTOP
\subseteq lesn-XTOP; lsd-HOM; les-XTOP<sup>2</sup>
\subseteq lesn-XTOP<sup>3</sup>; lsd-HOM
\subseteq
\subseteq
```

Theorem

$$(\text{les-XTOP}^{R})^{n} \subseteq \text{lesn-XTOP}$$
; $\text{les-XTOP} \subseteq \text{les-XTOP}^{2}$

Proof.

 $(\text{les-XTOP}^{R})^{n+1} \subseteq (\text{les-XTOP}^{R})^{n}$; les-XTOP \subseteq lesn-XTOP; lsd-HOM; les-XTOP² \subseteq lesn-XTOP³; lsd-HOM \subseteq lesn-XTOP²; lsd-HOM \subseteq \subset
Theorem

$$(\text{les-XTOP}^{R})^{n} \subseteq \text{lesn-XTOP}$$
; $\text{les-XTOP} \subseteq \text{les-XTOP}^{2}$

Proof.

 $\begin{array}{l} (\mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n \, ; \, \mathsf{les}\mathsf{-}\mathsf{XTOP} \\ \subseteq \mathsf{lesn}\mathsf{-}\mathsf{XTOP} \, ; \, \mathsf{lsd}\mathsf{-}\mathsf{HOM} \, ; \, \mathsf{les}\mathsf{-}\mathsf{XTOP}^2 \\ \subseteq \mathsf{lesn}\mathsf{-}\mathsf{XTOP}^3 \, ; \, \mathsf{lsd}\mathsf{-}\mathsf{HOM} \\ \subseteq \mathsf{lesn}\mathsf{-}\mathsf{XTOP}^2 \, ; \, \mathsf{lsd}\mathsf{-}\mathsf{HOM} \\ \subseteq \mathsf{lesn}\mathsf{-}\mathsf{XTOP} \, ; \, \mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \\ \subset \end{array}$

Theorem

$$(\text{les-XTOP}^{R})^{n} \subseteq \text{lesn-XTOP}$$
; $\text{les-XTOP} \subseteq \text{les-XTOP}^{2}$

Proof.

 $(\text{les-XTOP}^{R})^{n+1} \subseteq (\text{les-XTOP}^{R})^{n}$; les-XTOP $\subseteq \text{lesn-XTOP}$; lsd-HOM; les-XTOP^{2} $\subseteq \text{lesn-XTOP}^{3}$; lsd-HOM $\subseteq \text{lesn-XTOP}^{2}$; lsd-HOM $\subseteq \text{lesn-XTOP}$; les-XTOP^{R} $\subset \text{lesn-XTOP}$; les-XTOP^{R}

	I-TOP	le-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	
strict	2	
look-ahead	1	≤ 3
	2	<u>≤</u> 4

	I-TOP	le-XTOP
strict, nondeletin	ng 1	2
strict, look-ahea	ıd 1	≤ 2
stri	ct 2	≤ 2
look-ahea	ıd 1	≤ 3
	- 2	≤ 4

Definition (Hierarchy properties)

A dependency $\langle t, D, u \rangle$ is

input hierarchical if

1
$$w_2 < w_1$$

2 $\exists (v_1, w_1') \in D$ with $w_1' \le w_2$
for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

Definition (Hierarchy properties)

A dependency $\langle t, D, u \rangle$ is

input hierarchical if

1
$$w_2 < w_1$$

2 $\exists (v_1, w_1') \in D$ with $w_1' \le w_2$
for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

Definition (Hierarchy properties)

A dependency
$$\langle t, D, u \rangle$$
 is

input hierarchical if

1 $w_2 ≤ w_1$ **2** $\exists (v_1, w'_1) \in D$ with $w'_1 \le w_2$ for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$ **strictly input hierarchical if 1** $v_1 < v_2$ implies $w_1 \le w_2$ **2** $v_1 = v_2$ implies $w_1 \le w_2$ or $w_2 \le w_1$ for all $(v_1, w_1), (v_2, w_2) \in D$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

■ input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

■ input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

- input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$
- strict input link-distance bounded by *b* if for all $v_1, v_1 v' \in pos(t)$ with |v'| > b $\exists (v_1 v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

	hierarchical		link-distance bounded	
$\textbf{Model} \setminus \textbf{Property}$	input	output	input	output
In-XTOP I-XTOP ^R I-MBOT	strictly strictly	strictly strictly strictly	strictly	strictly strictly strictly

Theorem [\sim et al., 2009]

$\mathsf{les}\mathsf{-}\mathsf{XTOP} \subsetneq \mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subsetneq \mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{2} = (\mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^2$

Theorem [\sim et al., 2009]

$$\mathsf{les}\mathsf{-}\mathsf{XTOP} \subsetneq \mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subsetneq \mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{2} = (\mathsf{les}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^\mathsf{2}$$

Proof.

- look-ahead adds power at first level
- none of the basic classes is closed under composition

	I-TOP	le-XTOP
strict, nondeletin	ng 1	2
strict, look-ahea	ıd 1	≤ 2
stri	ct 2	≤ 2
look-ahea	ıd 1	≤ 3
	- 2	≤ 4

	I-TOP	le-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	2
strict	2	2
look-ahead	1	≤ 3
	2	≤ 4

Theorem [FÜLÖP, \sim , 2013]

$$Ie-XTOP^2 \subseteq (Ie-XTOP^R)^2 \subseteq Ie-XTOP^3 \subseteq (Ie-XTOP^R)^3$$

Theorem [FÜLÖP, ~, 2013]

$$Ie-XTOP^2 \subseteq (Ie-XTOP^R)^2 \subseteq Ie-XTOP^3 \subseteq (Ie-XTOP^R)^3$$

 $v \not\preceq v_{i-1}$ and $v \preceq v_i$ and $v \preceq v_{i+1}$

Theorem [FÜLÖP, ~, 2013]

$$Ie-XTOP^2 \subseteq (Ie-XTOP^R)^2 \subsetneq Ie-XTOP^3 \subseteq (Ie-XTOP^R)^3$$

 $v \not\preceq v_{i-1}$ and $v \preceq v_i$ and $v \preceq v_{i+1}$

Theorem [FÜLÖP, ~, 2013]

$$Ie-XTOP^2 \subseteq (Ie-XTOP^R)^2 \subsetneq Ie-XTOP^3 \subseteq (Ie-XTOP^R)^3$$

 $v \not\preceq v_{i-1}$ and $v \preceq v_i$ and $v \preceq v_{i+1}$ $v' \preceq v_{i-1}$ and $v' \preceq v_i$ and $v' \not\preceq v_{i+1}$

	I-TOP	le-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	2
strict	2	2
look-ahead	1	\leq 3
	2	<u>≤</u> 4

	I-TOP	le-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	2
strict	2	2
look-ahead	1	3
	2	3–4 (4)

	I-TOP	I-XTOP	I-XTOP ^R
ε -free, nondeleting	1	∞	∞
strict	2	∞	∞
nondeleting	1	∞	∞
strict, nondeleting	1	∞	∞
—	2	∞	∞

Proof.

■ completely different technique [FÜLÖP, ~, 2013]

	I-TOP	I-XTOP	I-XTOP ^R	I-MBOT
ε -free, strict, nondeleting	1	2	2	1
ε -free, strict	2	2	2	1
ε -free	2	4	3	1
otherwise (w/o delabeling)	2	∞	∞	1

Literature

Selected references

- ARNOLD, DAUCHET: Morphismes et Bimorphismes d'Arbres Theoret. Comput. Sci. 20, 1982
- BRAUNE, SEEMANN, QUERNHEIM, ~: Shallow local multi bottom-up tree transducers in statistical machine translation. Proc. ACL, 2013

FÜLÖP, \sim : Composition closure of ε -free linear extended top-down treetransducers.Proc. DLT, 2013

~, GRAEHL, HOPKINS, KNIGHT: The Power of Extended Top-down Tree Transducers. SIAM J. Comput. 39, 2009