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Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?
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Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Immediate answer

Non-default value ( 6= 0) for only finitely many trees



Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Better answer

Finite-state automaton computes map



Recognizable Tree Series

Determinism

I For efficiency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation
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Syntax

Definition (Borchardt and Vogler ’03)

Weighted tree automaton: (Q,Σ,A, µ,F )

I Q finite set of states

I Σ ranked alphabet of input symbols

I A = (A,+, ·, 0, 1) commutative semiring of weights

I µ = (µk)k≥0 with µk : Qk × Σ(k) × Q → A transition weights

I F : Q → A final weights

Definition
deterministic wta: for every (w , σ) ∈ Qk × Σ(k) there exists
exactly one q ∈ Q such that µk(w , σ, q) 6= 0
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Example — Syntax

Example
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Semantics

Definition
hµ : Trees(Σ)→ AQ
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Semantics

Definition
hµ : Trees(Σ)→ AQ

hµ( σ
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)q =
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Semantics
‖M‖(t) =

∑
q∈Q

F (q) · hµ(t)q
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Recognizability

Definition
recognizable f : there exists wta M such that ‖M‖ = f

Notation

I Context: tree with exactly one occurrence of �
S

� VP

VB

like

PP

it

Definition
For every t ∈ Trees(Σ) let t−1f : Contexts(Σ)→ A with

t−1f (c) = f (c[t])
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Example — Recognizability

Notation

I size: number of nodes in a tree

Example

Given two trees t and u

t−1 size(c) = size(c[t]) = size(c)− 1 + size(t)

u−1 size(c) = size(c[u]) = size(c)− 1 + size(u)

I Suppose that A is a field

I Vf sub-vectorspace generated by t−1f for all t

I t−1 size and ~1 are basis of Vsize and dim Vsize = 2
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Recognizability (cont’d)

Theorem (Bozapalidis, Louscou-Bozapalidou ’83)

Let A field and f : Trees(Σ)→ A

f recognizable ⇐⇒ dim Vf finite

Notes

I String case by [Reutenauer ’80]

I Refined by [Arz ’83] to identify requirements for direction

I Led to necessary and/or sufficient conditions of recognizability

I Tree case: no refinement yet
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Deterministic recognizability

Definition
det. recognizable f : there is det. wta M such that ‖M‖ = f

Definition (Myhill-Nerode congruence)

t ≡f u: there is nonzero a ∈ A such that t−1f = a · u−1f

f (c[t]) = a · f (c[u]) ∀ contexts c

Example

t ≡size u iff size(t) = size(u) because

t−1 size(c) = size(c)− 1 + size(t)

u−1 size(c) = size(c)− 1 + size(u)



Deterministic recognizability

Definition
det. recognizable f : there is det. wta M such that ‖M‖ = f

Definition (Myhill-Nerode congruence)

t ≡f u: there is nonzero a ∈ A such that t−1f = a · u−1f

f (c[t]) = a · f (c[u]) ∀ contexts c

Example

t ≡size u iff size(t) = size(u) because

t−1 size(c) = size(c)− 1 + size(t)

u−1 size(c) = size(c)− 1 + size(u)



Deterministic recognizability

Definition
det. recognizable f : there is det. wta M such that ‖M‖ = f

Definition (Myhill-Nerode congruence)

t ≡f u: there is nonzero a ∈ A such that t−1f = a · u−1f

f (c[t]) = a · f (c[u]) ∀ contexts c

Example

t ≡size u iff size(t) = size(u) because

t−1 size(c) = size(c)− 1 + size(t)

u−1 size(c) = size(c)− 1 + size(u)

Index of ≡size infinite



Deterministic recognizability (cont’d)

Theorem (Borchardt ’03)

Let A semifield and f : Trees(Σ)→ A

f det. recognizable ⇐⇒ ≡f finite index

Notes

I So size is not det. recognizable

I Refinements only for smaller classes (all-accepting wta)
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Refinement

Definition (Borchardt ’05)

t ≡f u: there exist nonzero a, b ∈ A such that a · t−1f = b · u−1f

a · f (c[t]) = b · f (c[u]) ∀ contexts c

Definition
Zero-divisor free A: a · b = 0 implies 0 ∈ {a, b}

Lemma
If A zero-divisor free, then ≡f congruence of term algebra Trees(Σ)
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Refinement (cont’d)

Theorem (Necessary condition)

If A zero-divisor free, then

f det. recognizable =⇒ ≡f finite index

Theorem
If A zero-divisor free, then every det. wta recognizing f has at
least index(≡f ) states

Corollary

height (longest path) not det. recognizable using addition
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Refinement (cont’d)

Question
What about

f det. recognizable ⇐= ≡f finite index

Notes

I Holds for semifields [Borchardt ’03]

I In the string case:
Refinement for certain cancellative semirings by [Eisner ’03]

I In the tree case: Open
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All-accepting wta

Definition (Drewes and Vogler ’07)

all-accepting wta: F = ~1

Definition
subtree-closed f : f (t) 6= 0 implies f (u) 6= 0 for all subtrees u of t

Lemma
f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem
If A cancellative, then

f det. aa-recognizable ⇐⇒ ≡f finite index and f subtree-closed

Notes

I Improves on a similar statement for semifield
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