
Myhill-Nerode Theorem for
Recognizable Tree Series — Revisited

Andreas Maletti

LATIN — 7 April 2008

Representation of parses

Input sentence

She saw the boy with the telescope.

Parses

Representation of parses

Parses
S

NP

She

VP

VB

saw

NP

NP

the boy

PP

PREP

with

NP

the telescope.

maybe

Representation of parses

Parses
S

NP

She

VP

VB

saw

NP

NP

the boy

PP

PREP

with

NP

the telescope.

0.33

Representation of parses

Parses
S

NP

She

VP

VP

VB

saw

NP

the boy

PP

PREP

with

NP

the telescope.

more likely

Representation of parses

Parses
S

NP

She

VP

VP

VB

saw

NP

the boy

PP

PREP

with

NP

the telescope.

0.66

Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Tree Series

Prerequisites

I Semiring structure on weights; e.g. (R,+, ·, 0, 1)

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Immediate answer

Non-default value (6= 0) for only finitely many trees

Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. · commutative

I A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps f ?

Better answer

Finite-state automaton computes map

Recognizable Tree Series

Determinism

I For efficiency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation

Recognizable Tree Series

Determinism

I For efficiency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation

Recognizable Tree Series

Determinism

I For efficiency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation

Recognizable Tree Series

Determinism

I For efficiency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation

Recognizable Tree Series

Determinism

I For efficiency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation

Table of Contents

Motivation

Weighted tree automaton

Myhill-Nerode characterizations

Table of Contents

Motivation

Weighted tree automaton

Myhill-Nerode characterizations

Syntax

Definition (Borchardt and Vogler ’03)

Weighted tree automaton: (Q,Σ,A, µ,F)

I Q finite set of states

I Σ ranked alphabet of input symbols

I A = (A,+, ·, 0, 1) commutative semiring of weights

I µ = (µk)k≥0 with µk : Qk × Σ(k) × Q → A transition weights

I F : Q → A final weights

Definition
deterministic wta: for every (w , σ) ∈ Qk × Σ(k) there exists
exactly one q ∈ Q such that µk(w , σ, q) 6= 0

Syntax

Definition (Borchardt and Vogler ’03)

Weighted tree automaton: (Q,Σ,A, µ,F)

I Q finite set of states

I Σ ranked alphabet of input symbols

I A = (A,+, ·, 0, 1) commutative semiring of weights

I µ = (µk)k≥0 with µk : Qk × Σ(k) × Q → A transition weights

I F : Q → A final weights

Definition
deterministic wta: for every (w , σ) ∈ Qk × Σ(k) there exists
exactly one q ∈ Q such that µk(w , σ, q) 6= 0

Example — Syntax

Example

q

σ

q1 . . . qk

with weight µk(q1 · · · qk , σ, q)

Example

3 6

1 2 4 5

ff

a b a a

Semantics

Definition
hµ : Trees(Σ)→ AQ

hµ(σ

t1 . . . tk

)q =
∑

q1···qk∈Qk

µk(q

σ

q1 . . . qk

) ·
k∏

i=1

hµ(ti)qi

Semantics

Definition
hµ : Trees(Σ)→ AQ

hµ(σ

t1 . . . tk

)q =
∑

q1···qk∈Qk

µk(q

σ

q1 . . . qk

) ·
k∏

i=1

hµ(ti)qi

Semantics
‖M‖(t) =

∑
q∈Q

F (q) · hµ(t)q

Table of Contents

Motivation

Weighted tree automaton

Myhill-Nerode characterizations

Recognizability

Definition
recognizable f : there exists wta M such that ‖M‖ = f

Notation

I Context: tree with exactly one occurrence of �
S

� VP

VB

like

PP

it

Definition
For every t ∈ Trees(Σ) let t−1f : Contexts(Σ)→ A with

t−1f (c) = f (c[t])

Recognizability

Definition
recognizable f : there exists wta M such that ‖M‖ = f

Notation

I Context: tree with exactly one occurrence of �
S

� VP

VB

like

PP

it

Definition
For every t ∈ Trees(Σ) let t−1f : Contexts(Σ)→ A with

t−1f (c) = f (c[t])

Recognizability

Definition
recognizable f : there exists wta M such that ‖M‖ = f

Notation

I Context: tree with exactly one occurrence of �
S

� VP

VB

like

PP

it

Definition
For every t ∈ Trees(Σ) let t−1f : Contexts(Σ)→ A with

t−1f (c) = f (c[t])

Example — Recognizability

Notation

I size: number of nodes in a tree

Example

Given two trees t and u

t−1 size(c) = size(c[t]) = size(c)− 1 + size(t)

u−1 size(c) = size(c[u]) = size(c)− 1 + size(u)

I Suppose that A is a field

I Vf sub-vectorspace generated by t−1f for all t

I t−1 size and ~1 are basis of Vsize and dim Vsize = 2

Example — Recognizability

Notation

I size: number of nodes in a tree

Example

Given two trees t and u

t−1 size(c) = size(c[t]) = size(c)− 1 + size(t)

u−1 size(c) = size(c[u]) = size(c)− 1 + size(u)

Hence t−1 size(c) = u−1 size(c) + size(t)− size(u)

I Suppose that A is a field

I Vf sub-vectorspace generated by t−1f for all t

I t−1 size and ~1 are basis of Vsize and dim Vsize = 2

Example — Recognizability

Notation

I size: number of nodes in a tree

Example

Given two trees t and u

t−1 size(c) = size(c[t]) = size(c)− 1 + size(t)

u−1 size(c) = size(c[u]) = size(c)− 1 + size(u)

Hence t−1 size(c) = u−1 size(c) + size(t)− size(u)

I Suppose that A is a field

I Vf sub-vectorspace generated by t−1f for all t

I t−1 size and ~1 are basis of Vsize and dim Vsize = 2

Example — Recognizability

Notation

I size: number of nodes in a tree

Example

Given two trees t and u

t−1 size(c) = size(c[t]) = size(c)− 1 + size(t)

u−1 size(c) = size(c[u]) = size(c)− 1 + size(u)

Hence t−1 size(c) = u−1 size(c) + size(t)− size(u)

I Suppose that A is a field

I Vf sub-vectorspace generated by t−1f for all t

I t−1 size and ~1 are basis of Vsize and dim Vsize = 2

Recognizability (cont’d)

Theorem (Bozapalidis, Louscou-Bozapalidou ’83)

Let A field and f : Trees(Σ)→ A

f recognizable ⇐⇒ dim Vf finite

Notes

I String case by [Reutenauer ’80]

I Refined by [Arz ’83] to identify requirements for direction

I Led to necessary and/or sufficient conditions of recognizability

I Tree case: no refinement yet

Recognizability (cont’d)

Theorem (Bozapalidis, Louscou-Bozapalidou ’83)

Let A field and f : Trees(Σ)→ A

f recognizable ⇐⇒ dim Vf finite

Notes

I String case by [Reutenauer ’80]

I Refined by [Arz ’83] to identify requirements for direction

I Led to necessary and/or sufficient conditions of recognizability

I Tree case: no refinement yet

Deterministic recognizability

Definition
det. recognizable f : there is det. wta M such that ‖M‖ = f

Definition (Myhill-Nerode congruence)

t ≡f u: there is nonzero a ∈ A such that t−1f = a · u−1f

f (c[t]) = a · f (c[u]) ∀ contexts c

Example

t ≡size u iff size(t) = size(u) because

t−1 size(c) = size(c)− 1 + size(t)

u−1 size(c) = size(c)− 1 + size(u)

Deterministic recognizability

Definition
det. recognizable f : there is det. wta M such that ‖M‖ = f

Definition (Myhill-Nerode congruence)

t ≡f u: there is nonzero a ∈ A such that t−1f = a · u−1f

f (c[t]) = a · f (c[u]) ∀ contexts c

Example

t ≡size u iff size(t) = size(u) because

t−1 size(c) = size(c)− 1 + size(t)

u−1 size(c) = size(c)− 1 + size(u)

Deterministic recognizability

Definition
det. recognizable f : there is det. wta M such that ‖M‖ = f

Definition (Myhill-Nerode congruence)

t ≡f u: there is nonzero a ∈ A such that t−1f = a · u−1f

f (c[t]) = a · f (c[u]) ∀ contexts c

Example

t ≡size u iff size(t) = size(u) because

t−1 size(c) = size(c)− 1 + size(t)

u−1 size(c) = size(c)− 1 + size(u)

Index of ≡size infinite

Deterministic recognizability (cont’d)

Theorem (Borchardt ’03)

Let A semifield and f : Trees(Σ)→ A

f det. recognizable ⇐⇒ ≡f finite index

Notes

I So size is not det. recognizable

I Refinements only for smaller classes (all-accepting wta)

Deterministic recognizability (cont’d)

Theorem (Borchardt ’03)

Let A semifield and f : Trees(Σ)→ A

f det. recognizable ⇐⇒ ≡f finite index

Notes

I So size is not det. recognizable

I Refinements only for smaller classes (all-accepting wta)

Refinement

Definition (Borchardt ’05)

t ≡f u: there exist nonzero a, b ∈ A such that a · t−1f = b · u−1f

a · f (c[t]) = b · f (c[u]) ∀ contexts c

Definition
Zero-divisor free A: a · b = 0 implies 0 ∈ {a, b}

Lemma
If A zero-divisor free, then ≡f congruence of term algebra Trees(Σ)

Refinement

Definition (Borchardt ’05)

t ≡f u: there exist nonzero a, b ∈ A such that a · t−1f = b · u−1f

a · f (c[t]) = b · f (c[u]) ∀ contexts c

Definition
Zero-divisor free A: a · b = 0 implies 0 ∈ {a, b}

Lemma
If A zero-divisor free, then ≡f congruence of term algebra Trees(Σ)

Refinement

Definition (Borchardt ’05)

t ≡f u: there exist nonzero a, b ∈ A such that a · t−1f = b · u−1f

a · f (c[t]) = b · f (c[u]) ∀ contexts c

Definition
Zero-divisor free A: a · b = 0 implies 0 ∈ {a, b}

Lemma
If A zero-divisor free, then ≡f congruence of term algebra Trees(Σ)

Refinement (cont’d)

Theorem (Necessary condition)

If A zero-divisor free, then

f det. recognizable =⇒ ≡f finite index

Theorem
If A zero-divisor free, then every det. wta recognizing f has at
least index(≡f) states

Corollary

height (longest path) not det. recognizable using addition

Refinement (cont’d)

Theorem (Necessary condition)

If A zero-divisor free, then

f det. recognizable =⇒ ≡f finite index

Theorem
If A zero-divisor free, then every det. wta recognizing f has at
least index(≡f) states

Corollary

height (longest path) not det. recognizable using addition

Refinement (cont’d)

Theorem (Necessary condition)

If A zero-divisor free, then

f det. recognizable =⇒ ≡f finite index

Theorem
If A zero-divisor free, then every det. wta recognizing f has at
least index(≡f) states

Corollary

height (longest path) not det. recognizable using addition

Refinement (cont’d)

Question
What about

f det. recognizable ⇐= ≡f finite index

Notes

I Holds for semifields [Borchardt ’03]

I In the string case:
Refinement for certain cancellative semirings by [Eisner ’03]

I In the tree case: Open

Refinement (cont’d)

Question
What about

f det. recognizable ⇐= ≡f finite index

Notes

I Holds for semifields [Borchardt ’03]

I In the string case:
Refinement for certain cancellative semirings by [Eisner ’03]

I In the tree case: Open

Refinement (cont’d)

Question
What about

f det. recognizable ⇐= ≡f finite index

Notes

I Holds for semifields [Borchardt ’03]

I In the string case:
Refinement for certain cancellative semirings by [Eisner ’03]

I In the tree case: Open

All-accepting wta

Definition (Drewes and Vogler ’07)

all-accepting wta: F = ~1

Definition
subtree-closed f : f (t) 6= 0 implies f (u) 6= 0 for all subtrees u of t

Lemma
f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem
If A cancellative, then

f det. aa-recognizable ⇐⇒ ≡f finite index and f subtree-closed

Notes

I Improves on a similar statement for semifield

All-accepting wta

Definition (Drewes and Vogler ’07)

all-accepting wta: F = ~1

Definition
subtree-closed f : f (t) 6= 0 implies f (u) 6= 0 for all subtrees u of t

Lemma
f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem
If A cancellative, then

f det. aa-recognizable ⇐⇒ ≡f finite index and f subtree-closed

Notes

I Improves on a similar statement for semifield

All-accepting wta

Definition (Drewes and Vogler ’07)

all-accepting wta: F = ~1

Definition
subtree-closed f : f (t) 6= 0 implies f (u) 6= 0 for all subtrees u of t

Lemma
f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem
If A cancellative, then

f det. aa-recognizable ⇐⇒ ≡f finite index and f subtree-closed

Notes

I Improves on a similar statement for semifield

All-accepting wta

Definition (Drewes and Vogler ’07)

all-accepting wta: F = ~1

Definition
subtree-closed f : f (t) 6= 0 implies f (u) 6= 0 for all subtrees u of t

Lemma
f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem
If A cancellative, then

f det. aa-recognizable ⇐⇒ ≡f finite index and f subtree-closed

Notes

I Improves on a similar statement for semifield

References (1/2)

J. Arz.
Syntactic congruences and syntactic algebras.
RAIRO Theoretical Informatics, 17(3):231–238, 1983.

Björn Borchardt.
The Myhill-Nerode theorem for recognizable tree series.
In Proc. DLT, volume 2710 of LNCS, pages 146–158. Springer,
2003.

Björn Borchardt and Heiko Vogler.
Determinization of finite state weighted tree automata.
J. Autom. Lang. Combin., 8(3):417–463, 2003.

Symeon Bozapalidis and Olympia Louscou-Bozapalidou.
The rank of a formal tree power series.
Theoret. Comput. Sci., 27:211–215, 1983.

References (2/2)

Frank Drewes and Heiko Vogler.
Learning deterministically recognizable tree series.
J. Autom. Lang. Combin., 2007.

C. Reutenauer.
Séries formelles et algébres syntactiques.
J. Algebra, 66:448–483, 1980.

Thank You!

	Motivation
	Weighted tree automaton
	Myhill-Nerode characterizations

