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Representation of parses
Input sentence

She saw the boy with the telescope.
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» A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps ?

Immediate answer

Non-default value ( # 0) for only finitely many trees



Tree Series

Prerequisites

» Semiring structure on weights
» Commutative semiring; i.e. - commutative

» A mapping f assigning weights to infinitely many trees

Question

How to finitely represent such maps ?

Better answer

Finite-state automaton computes map
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Recognizable Tree Series

Determinism

» For efficiency we prefer deterministic devices

» Single run for each input

Questions

» Which mappings can be computed in this way?
» Can a given map f be computed in this way?

» How many states are needed to compute a map 7

Answer

The MyYHILL-NERODE congruence relation
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Syntax

Definition (Borchardt and Vogler '03)
Weighted tree automaton: (Q, X, A, u, F)
» @ finite set of states
» 3 ranked alphabet of input symbols
» A= (A,+,-,0,1) commutative semiring of weights
> 1= (pk)k>0 with pg: Q% x £(K) x Q — A transition weights
» F: Q — A final weights



Syntax

Definition (Borchardt and Vogler '03)
Weighted tree automaton: (Q, X, A, u, F)
> (@ finite set of states
» > ranked alphabet of input symbols
» A= (A, +,-,0,1) commutative semiring of weights
> 1= (pk)k>0 with py: Q% x £(K) x Q — A transition weights
» F: Q — A final weights

Definition
deterministic wta: for every (w, o) € Q% x X(k) there exists
exactly one g € Q such that ux(w,o,q) #0



Example — Syntax

Example
q with weight (g1 - g, 0, q)
|
g
a ... Gk
Example
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Definition
h,: Trees(X) — A
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Semantics

Definition
h,: Trees(X) — A

k
hu( a )q = Z pei q ) - H hu(ti)qf
/’\ g qrEQX | i=1
tv ...tk o
T
a. ... gk
Semantics

IMII(2) =) F(a) - hu(t)q

qeqQ
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Recognizability
Definition
recognizable f: there exists wta M such that |M|| = f
Notation

» Context: tree with exactly one occurrence of [

S
O VP
/\
VB PP
\ \
like it
Definition

For every t € Trees(X) let tf: Contexts(X) — A with

t~1f(c) = f(clt])
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» size: number of nodes in a tree
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Example — Recognizability

Notation

» size: number of nodes in a tree

Example
Given two trees t and u

tLsize(c) = size(c[t]) = size(c) — 1 + size(t)

u~Lsize(c) = size(c[u]) = size(c) — 1 + size(u)

Hence t~!size(c) = u~!size(c) + size(t) — size(u)
» Suppose that A is a field
> /¢ sub-vectorspace generated by t1f for all t
» tlsize and 1 are basis of Ve and dim Viye = 2
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Theorem (Bozapalidis, Louscou-Bozapalidou '83)
Let A field and f: Trees(¥X) — A

f recognizable <=  dim V¥ finite

Notes

» String case by [Reutenauer '80]
» Refined by [Arz '83] to identify requirements for direction

» Led to necessary and/or sufficient conditions of recognizability



Recognizability (cont'd)

Theorem (Bozapalidis, Louscou-Bozapalidou '83)
Let A field and f: Trees(¥X) — A

f recognizable <=  dim V¥ finite

Notes

» String case by [Reutenauer '80]
» Refined by [Arz '83] to identify requirements for direction

» Led to necessary and/or sufficient conditions of recognizability

» Tree case: no refinement yet
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Deterministic recognizability

Definition
det. recognizable f: there is det. wta M such that |[M| = f
Definition (MYHILL-NERODE CONGRUENCE)

t =¢ u: there is nonzero a € A such that t1f = a- u~1f

f(c[t]) = a- f(c[u]) V contexts ¢

Example
t =size U iff size(t) = size(u) because

t~Lsize(c) = size(c) — 1 + size(t)

u~Lsize(c) = size(c) — 1 + size(u)

Index of =, infinite
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Deterministic recognizability (cont'd)

Theorem (Borchardt '03)
Let A semifield and f: Trees(¥X) — A

f det. recognizable <= = finite index

Notes

» So size is not det. recognizable

» Refinements only for smaller classes (all-accepting wta)
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Refinement

Definition (Borchardt '05)

t =¢ u: there exist nonzero a, b € A such that a-t~1f = b-u1f
a-f(c[t]) =b-f(clu]) V contexts ¢

Definition

Zero-divisor free A: a- b =0 implies 0 € {a, b}

Lemma
If A zero-divisor free, then =¢ congruence of term algebra Trees(X)
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Refinement (cont'd)

Theorem (Necessary condition)

If A zero-divisor free, then

f det. recognizable =— = finite index

Theorem
If A zero-divisor free, then every det. wta recognizing f has at
least index(=¢) states

Corollary
height (longest path) not det. recognizable using addition
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Refinement (cont'd)

Question
What about

f det. recognizable <= = finite index

Notes
» Holds for semifields [Borchardt '03]

» In the string case:
Refinement for certain cancellative semirings by [Eisner '03]

> In the tree case: Open
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f det. aa-recognizable iff f det. recognizable and subtree-closed



All-accepting wta
Definition (Drewes and Vogler '07)
all-accepting wta: F = 1

Definition
subtree-closed f: f(t) # 0 implies f(u) # O for all subtrees u of t

Lemma
f det. aa-recognizable iff f det. recognizable and subtree-closed

Theorem
If A cancellative, then

fdet. aa-recognizable <= = finite index and f subtree-closed

Notes

» Improves on a similar statement for semifield
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