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Prosodic Event Recognition (PER)

I labelling of segments: syllables or words

I e.g. pitch accents and phrase boundaries

I statistical learning task

I frame-based or aggregated features

I acoustic (speech signal) and lexico-syntactic (text)
information

I useful for automatic language understanding
I connection between prosody and phrasing, semantics,

information structure, etc.
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Example
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Related Work

I comparability of methods difficult

I most comparable work on pitch accent recognition:
I ≈ 87% on speaker-dependent detection [Wang et al. 2015]

I ≈ 83% for speaker-independent detection [Ren et al. 2004]

I ≈ 64% for classification of ToBI types [Rosenberg et al. 2010]
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CNN-based Prosodic Event Recognition

I convolutional neural network (CNN) learns high-level feature
representations from low-level acoustic descriptors

I relies only on acoustic features that are readily obtained from
the speech signal

I only segmental information is time-alignment at the word level
(→ word-based recognition)

I address explicit context modelling in a simple and efficient way
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Experimental Focus

I detection (binary) and classification (multi-class)

I ToBI pitch accents and intonational phrase boundaries
[Silverman et al. 1992]

I American English data

I speaker-dependent and speaker-independent evaluation
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Model

I supervised learning task: each word is
labelled as carrying a prosodic event or
not

I feature matrix: frame-based
representation of audio signal

I 2 convolution layers

I max pooling finds most salient features

I resulting feature maps concatenated to
one feature vector

I softmax layer: 2 units for binary
classification or several for multi-class
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Acoustic Features

I extracted using the openSMILE toolkit [Eyben et al. 2013]

I two different feature sets:
I prosody : smoothed f0, RMS energy, PCM loudness, voicing

probability, Harmonics-to-Noise-Ratio
I Mel : 27 features extraced from the Mel-frequency spectrum

I features computed for each 20ms frame with a 10ms shift

I all frames are grouped into feature matrices that represent
each word

I zero padding ensures that matrices have the same size
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Modelling Context

I most PER methods do context modelling

I prosodic events span longer stretches of speech

I e.g. right and left context words

I CNN looks for patterns in the whole input
I adding right and left context frames to the input matrix makes

modelling the current word more difficult

I max pooling may find more salient features in neighbouring
segments
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Position Indicator Feature

1st convolution layer: kernels span entire feature dimension
→ model is constantly informed if the current frames belong to the
current word or not
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Hyperparameters

I 1st layer: 100 kernels of shape 6× d , stride 4× 1

I 2nd layer: 100 kernels of shape 4× 1, stride 2× 1

I max pooling size is set so that output has same shape

I dropout with p = 0.2 applied before the softmax layer

I models trained for 50 epochs with adaptive learning rate
(Adam) and L2 regularization

I all experiments are repeated 3 times and the results are
averaged
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Data

I Boston University Radio News Corpus subset that is manually
labelled with ToBI event types [Ostendorf et al. 1993]

I 3 female, 2 male speakers
≈ 2 hours and 45 minutes of speech

I largest speaker set f2b used for speaker-dependent
experiments with 10-fold cross-validation

I speaker-independent: leave-one-speaker-out cross-validation

Speakers f1a f2b f3a m1a m2b

PA # words 4375 12357 2736 3584 3607
PB # words 4362 12606 2736 5055 3607
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Labels

I binary classification (detection): all labels grouped together as
one class

I multi-class classification of 5 different ToBI types:
I pitch accents:

(1) H*; !H* (2) L* (3) L+H*; L+!H* (4) L*+H; L*+!H
(5) H+!H*

I boundary tones:
(1) L-L% (2) L-H% (3) H-L% (4) !H-L% (5) H-H%

I uncertain events ignored for both detection and classification

I uncertain types ignored for classification
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Results: Pitch Accent Recognition

one speaker all speakers
Feature set prosody Mel pros.+Mel prosody Mel pros.+Mel
Detection
1 word 84.2 84.2 84.0 81.9 78.3 79.3
3 words 58.3 53.1 53.6 58.2 54.3 55.3
3 words + PF 86.3 83.3 83.9 83.6 80.3 81.1
Classification
1 word 74.4 72.7 73.5 68.0 64.7 64.5
3 words 52.4 47.8 47.8 50.5 48.4 48.4
3 words + PF 76.3 72.3 72.9 69.0 65.9 65.3

all results reported in accuracy (%)
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Results: Phrase Boundary Recognition

one speaker all speakers
Feature set prosody Mel pros.+Mel prosody Mel pros.+Mel
Detection
1 word 87.6 89.2 89.8 86.5 85.3 86.1
3 words 80.3 75.4 75.4 82.7 81.0 80.8
3 words + PF 90.2 90.4 90.5 89.8 88.3 88.8
Classification
1 word 85.6 87.6 88.0 85.1 84.4 84.9
3 words 79.7 74.5 74.6 82.5 81.4 81.5
3 words + PF 87.8 88.7 88.8 87.3 86.2 86.7

all results reported in accuracy (%)
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Results: Overview

Pitch Accents Phrase Boundaries

using best-performing feature set

Sabrina Stehwien, Ngoc Thang Vu University of Stuttgart Institute for Natural Language Processing (IMS) 16



Observations

I large drop in performance when extending the input to include
the right and left context words

I performance improves after adding position indicator features

I results for phrase boundaries show similar pattern as for pitch
accents

I prosody feature set performs best

I differences in feature sets not as large for phrase boundaries
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Effects of z-scoring

non-normalized normalized

Pitch Accents
Detection 83.6 77.0
Classification 69.0 62.6

Phrase Boundaries
Detection 89.8 83.0
Classification 87.3 83.2

I speaker-independent experiments using prosody and position
features

I the CNN looks or relative changes in speech, and normalizing
may lead to a loss in fine differences
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Conclusion

I position indicator feature is crucial for this method

I model generalizes well from a speaker-dependent setup to a
speaker-independent setting

I presented method can be readily applied to other datasets

I strong and efficient modelling technique that will be used as a
basis in future work

I further feature and results analysis necessary
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