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Abstract: The duration of syllables or words is an important correlate of prosody
and often used as a feature for automatic pitch accent detection. We have previ-
ously introduced a method for pitch accent detection using a convolutional neural
network (CNN) that yields good performance using low-level acoustic descriptors
alone, without any explicit duration information. In this paper, we use this model
for various pitch accent and lexical stress detection tasks at the word and syllable
level on the DIRNDL German radio news corpus. We show that information on
word or syllable duration is encoded in the high-level CNN feature representation
by training a linear regression model on these features to predict duration. The fact
that this can be approximated suggests that the CNN makes use of implicit dura-
tion information that is derived from the frame-based input. We also observe that
duration is only learnt in tasks where it is directly correlated with the target label.
We compare two different methods of pooling that capture the input information
differently and show how this affects what is encoded in the output representation.

1 Introduction

The duration of syllables or words is one of the primary correlates of prosody and thus often
used as a feature in the automatic modelling of prominence. At the syllable level, stressed
syllables are longer than unstressed ones, and pitch accents lengthen them additionally. At the
word level, duration is useful since pitch accented words are not only more prominent due to
lengthening, but also because content words such as verbs and nouns are longer on average and
also tend to be accented more frequently [1].

Recently, neural networks have become a popular approach to detecting prosodic events
and lexical stress automatically [2, 3, 4]. We have previously introduced a model for pitch
accent detection using a convolutional neural network (CNN) that yields good performance
using low-level acoustic descriptors alone [5]. We have reported results on various types of
English speech data. The only preprocessing required for this method is time-alignment at the
word level and the extraction of simple frame-based features. By default, it does not include
any explicit duration information. Despite this simple setup, its performance is comparable to
other methods.

In this paper, we report experimental results of various pitch accent and lexical stress de-
tection tasks on German read speech. We tested two assumptions: First, since the duration
of the input words or syllables is provided implicitly as the length of the frame sequence, we
assume that it is likely that the CNN is making use of this information. Second, we expect
that this depends on the method of pooling and padding. Analyzing what a CNN has learnt,
however, is not straightforward: The use of such methods is motivated by the notion of let-
ting the model learn the best high-level features from low-level input. The result is a feature
representation that is not readily interpreted. We approached this problem by training a linear
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regression model on this feature representation to predict word and syllable duration. If the du-
ration can be approximated, then we can conclude that the CNN has encoded this information
in the high-level features; it has been “learnt”. This approach is similar to methods previously
used in natural language processing [6] and for analyzing speaker embeddings [7]. To the best
of our knowledge, this is the first study to apply this type of analysis to prosodic modelling.

2 Data

We used a subset of the DIRNDL German radio news corpus [8] that is prosodically annotated
with GToBI pitch accents and phrase boundaries. The corpus contains recordings of several
professional female and male speakers that amount to nearly 5 hours of speech. Table 1 lists the
number of words, syllables and the relevant prosodic events in the dataset.

We used the word- and syllable-level annotations as separate datasets for different tasks.
Pitch accent detection distinguishes between the accent and none classes on either words or
syllables. At the syllable level, we also performed lexical stress detection (primary stress) and
classification of the following pitch accent types: H* (high pitch accent), H*L (falling pitch
accent) and L*H (rising pitch accent). For the type classification tasks, we left out all syllables
belonging to the negative class since we were interested in the distinction of given accents.

words 35347 | syllables 76396
accented 18137 | stressed 35572
accented 18958

H* 16510
H*L 6115
L*H 7815

Table 1 — Overview of annotations used in the DIRNDL dataset.

3 Model

3.1 Convolutional neural network

Our pitch accent detector is a supervised learning method that labels each datapoint (word or
syllable) with an event (pitch accent or stress). The model consists of a convolutional neural
network (CNN) illustrated schematically in Figure 1. The network learns high-level feature
representations from low-level acoustic input, resulting in a feature vector that is used for clas-
sification.

The input to the CNN is a matrix X € RA*s representing the current word (Weyrens) and
the left and right context words (Wprevious and Wyey). The d-dimensional feature vector for
each frame consists of low-level descriptors of the audio signal. The network contains two
convolution layers in which a set of 2-dimensional kernels are shifted across the input matrix.
The output of each convolution layer is a set of feature maps corresponding to the number of
kernels in the respective layer. Afterwards, max pooling selects the neuron with the highest
activation in each feature map [9]. The output values are concatenated to one final output
representation. For regularization, we also apply dropout [10] to this last layer. The feature
vector is fed into the softmax activation layer which either has two units for binary classification
or several units for multi-class classification.
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Figure 1 — CNN for binary classification (2 output units) using 1-max pooling. The input is a 3-word
context window of acoustic and position indicator features.

3.2 Acoustic features

The speech signal was represented by the following low-level acoustic descriptors extracting
using the OpenSMILE toolkit [11]: energy, loudness, zero-crossing rate (all 20 ms frames), FO,
voicing probability and harmonics-to-noise-ratio (all 50ms frames). All features were extracted
with a 10ms shift size. The features were z-scored per utterance file, which provides not only
normalization per speaker but also per individual recording.

3.3 Hyperparameters and training

The first layer of the CNN consists of n = 100 2-dimensional kernels of the shape 6 x d and a
stride of 4 x 1, with d = 6 as the number of acoustic features. The second layer consists of 100
kernels of the shape 4 x 1 and a stride of 2 x 1. We set the dropout rate to p = 0.8. The models
are trained for 20 epochs with an adaptive learning rate (Adam [12]) and /2 regularization. We
tracked the validation accuracy on the development set and applied the best model of the 20
epochs to the test data.

The data was divided into training, development and test splits with 10-fold cross valida-
tion. 500 held-out words were used as the development set and the test sets consisted of 1000
words. All experiments were repeated 3 times and the results were averaged. The CNN was
implemented using the Keras! API.

4 Comparison of pooling methods

4.1 1-max pooling with position indicators

I-max pooling is a simple selection of the maximum value in the 2-dimensional pooling window
which spans the length of each feature map (see Figure 1). The output of the pooling layer is
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Figure 2 — CNN for binary classification and 3-max pooling. Each input word is padded separately.

a feature matrix of the shape n x 1, which corresponds to the number of kernels in the last
convolution layer. Our previous study [5] had shown that the pitch accent detector relies on a
position indicator feature that distinguishes frames that pertain to the current word from those
of the preceding and following context words. This can be explained as follows. Since the input
words have different lengths, the input is padded with zeros so that each input matrix has the
same size. The padding was concatenated to the end of the matrix. Therefore, there is no fixed
position that corresponds to each individual input word. The position indicators help the model
select features that are most important for representing the current word. They were added
as an additional feature to the acoustic input and consist of ones for w¢,r.n; and zeros for the
neighbouring words. In the first convolution layer, we set the kernel size to span the complete
feature dimension (d + 1) so that the position indicators are constantly taken into account.

4.2 3-max pooling

We compared the above method to an alternative that we refer to as 3-max pooling. In this
setting, we zero padded each word in the input matrix separately so that each word has the same
size (see Figure 2). Instead of pooling over each entire feature map, we defined three equal
sized pooling windows for which one maximum value is selected. This method ensures that the
learnt feature representation contains information on all three words. Therefore, the position
indicator features should not be required.

The resulting flattened feature vector has the length 3n. In these experiments, we used 30
feature maps, that is the output vector has a length of 90 and is thus comparable in size to the
1-max pooling output.

4.3 Experimental results

In sum, we obtained two different pooling methods and two different ways of padding the input.
In the following experiments, we tested various combinations with and without the position
indicator features.

Table 2 shows the Fl-score for word-based pitch accent detection. As shown previously,



I-max pooling performs best using position indicators. The model does not perform well if they
are left out, but the performance can be increased if the padding is placed in between the words.
This may be due to the fact that the padded areas give an indication of word boundaries. 3-max
pooling, as we had assumed, makes the position indicators unnecessary. Overall, 1-max pooling
combined with the position indicators yields slightly better results, however the performance of
both methods is comparable. One possible disadvantage of pooling over each word separately
is that the zero padding breaks up the input signal. This still may not explain the differences
observed in these experiments. Using n = 100 for 3-max pooling (that is, the final feature
vectors has a length of 300), for example, increases the F1-score by roughly 1 percentage point.

setting + pos.-ind. - pos.-ind.

1-max pooling  padding at end 86.8 63.4
padding between words 86.2 70.4

3-max pooling  padding between words 85.8 86.0

Table 2 — Performance (F1-score) of word-based pitch accent detection using 1-max pooling (n = 100)
and 3-max pooling (n = 30)

4.4 Task performance

Next we applied the two best settings (1-max pooling with position indicators and 3-max pool-
ing without) on all word and syllable-level tasks. The results are listed in Table 3. The numbers
for word-based pitch accent detection are the same as in Table 2 and included for comparison.
Across all tasks, 1-max pooling performs slightly better than 3-max pooling, namely around
1-2 percentage points. The only exception is syllable-based pitch accent detection (2), where
this difference is larger.

Syllable-level pitch accent detection is more difficult than word-based pitch accent detec-
tion for various reasons. First, the classes are less balanced (see Table 1), which makes it harder
to model the minority class. Second, since the words are simply replaced by syllables in this
case, much less context is provided (as discussed in [13]). Another reason, assuming that the
model can learn duration, may be that the model cannot make use of any correlations to word
length that could be attributed to word identity or part of speech. We also note that the CNN
model had been optimized for word-level applications, while the aim of these experiments is a
proof of concept, which does not require state-of-the-art performance.

Lexical stress detection (3) is an easier task, which is partly due to the fact that the classes
are more balanced. Pitch accent detection is facilitated when only stressed syllables are consid-
ered (4). In this case, the model does not have to learn to distinguish unstressed and therefore
unaccented syllables, which greatly reduces the number of negative examples in the data. For
the classification of pitch accent types, we restrict the number of datapoints further and consider
only syllables which carry a positive label. The three-way classification (5) is considerably more
difficult than the binary distinction in (6), not only due to the multi-class learning problem but
also since the H*-class makes up around half of the labels in (5) and thus constitutes a propor-
tionally large majority class.



Task I-max 3-max maj. class

word-based

(1) PA detection 86.8 86.0 51.3
syllable-based

(2) PA detection 60.0 55.0 24.8
(3) stress detection 69.0 67.0 46.6
(4) PA detection stressed-only 75.0 73.0 53.3
(5) H*/H*L/L*H 66.0 65.0 54.2
(6) H*L/L*H 72.0 70.0 56.1

Table 3 — F1-scores and majority class sizes for various pitch accent (PA) and lexical stress detection
tasks at the word and syllable level. The table compares 1-max pooling with position indicators to 3-max
pooling without position indicators.

5 Evidence of duration in CNN output representations

5.1 Analysis using linear models

In order to investigate what the CNN has learnt, we analyzed the high-level output representa-
tion, which we refer to as the CNN features in this section. The features were extracted after the
max pooling layer, before dropout, and consist of an n-dimensional vector for each data point:
n = 100 for the 1-max setting, and 3n = 90 for 3-max pooling. We used this data to train a lin-
ear regression model to predict the duration of each of the three input words (W ey, Weur, Wrext)
and measure the goodness of fit using the adjusted R>. This can provide an idea of how well
duration information is encoded in the CNN features.

Using this method, we compared models trained using 1-max pooling and position indica-
tors and 3-max pooling without position indicators, assuming that the duration of the three input
words (or syllables) was learnt differently. We expected to find differences across the various
tasks listed in Table 3, where duration may be more or less important. For comparison, we
also measured the Spearman correlation between the target label (the respective pitch accent or
stress label) and the duration of w,,. Both methods were implemented using R [14].

5.2 Results

The results of the analysis for each task are shown in Table 4. For word-based pitch accent
detection (1), the linear model yields a moderately good fit (0.64). Compared to this, the R?
for the duration of the current syllable is lower (<0.50 in tasks 2-4), but still high enough to
be considered an approximate fit. Based on this result, we conclude that the CNN can learn
duration, even if it is not directly included as a feature.

To show that this effect is due to the position indicators, we added results for 1-max pooling
without them for comparison. The R2 for w,y,, in this case, is much lower. This may lead to the
assumption that the position indicators simply make the CNN “ignore” the context, however,
our previous experiments [5] showed that this performed better than when not using any context
at all.

Across tasks, the correlation (p) between the duration of w,, and the target label appears
to explain how well the former is predicted by the linear models. It also shows that duration is
more indicative of pitch accents for words than it is for syllables, which is likely due to a lower
variation in syllable length. Nevertheless, the results reflect the fact that there is a difference
in length between accented and non-accented syllables, even when considering only stressed
ones (3). Interestingly, duration appears to be less important for detecting lexical stress (2).
There is no correlation between the syllable duration and target label for the tasks that classify



given pitch accent types (5-6), and thus the CNN features do not appear to encode much of this
information.

Both pooling methods lead to a similar R? on we,, as well as similar performance levels
(shown in Table 3). The only notable difference is the fit on w e, and wye,,. When using 1-max
pooling, the CNN can not be said to learn the duration of the two context words, since R? is
very low. For 3-max pooling, however, these numbers are increased. In this case, the CNN
features show evidence of containing duration information for all three input words, but similar
to 1-max pooling, the duration of w,, yields the best fit. This is an interesting result, since there
were no position indicators used in this setting. Thus, the CNN appears to have automatically
learnt features pertaining mainly to the “correct” word or syllable.

task/setting I-max pooling 3-max pooling
measure P R? R?
duration Weur  Wprev I Weur | Wnext Wprey I Weur | Wnext
word-based

(1) PA detection 0.70 0.11/0.64/0.09 0.48/0.61/0.41
- pos.-ind. 0.06/0.14 /0.06

syllable-based

(2) PA detection 034 0.06/042/0.06 0.16/0.40/0.18
(3) stress detection 0.22 0.11/0.31/0.07 0.31/0.38/0.32
(4) PA detection str.-only  0.36  0.09/0.40/0.06 0.24/0.38/0.21
(5) H¥*/H*L/L*H -0.04 0.05/0.16/0.12 0.21/0.19/0.15
(6) H*L/L*H -0.04 0.03/0.14/0.07 0.09/0.17/0.08

Table 4 — R? of predicting word duration using the output of CNN models trained on various tasks. The
table compares 1-max pooling with position indicators (n = 100) and 3-max pooling without position
indicators (n = 30). p refers to the Spearman correlation between the duration of w,, and the target
label (pitch accent or stress).

6 Conclusion

In this paper, we described experiments and results indicating that a CNN-based pitch accent
detector can learn duration information on its own, even though the input consists of simple
frame-based features without explicit information on word length. This also holds for syllable-
based pitch accent and lexical stress detection as long as it helps to solve the respective task.
We compared two pooling methods and showed that pooling over each of the three input words
or syllables, as opposed to simple 1-max pooling, increases the amount of context information
captured by the CNN. Most information that is learnt, however, pertains to the current word or
syllable. In this study, we focused only on the learning of duration. We are currently analyzing
what information derived from the frame-based acoustic features is encoded in the CNN output.

So far we have only provided evidence that the CNN output contains specific information,
that is the duration of syllables and words. What these experiments cannot answer is the ques-
tion of how exactly this information is encoded in the final feature representation and how it
is learnt. This is a current challenge for research on neural networks and is currently attract-
ing considerable attention. In our case, this work constitutes a first step that contributes to our
understanding of neural-network-based models of prosody.
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