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e PAD benefits from adding information from text: Word
parts of speech, function vs. content words, word identity | Vs embeddings
_ _ 1.Convolution W, W, Weyq
e state-of-the-art deep learning methods use word embeddings feat map 1 AN,
to represent syntactic and semantic properties of words feat_map_2
. . feat map 3
@ not previously used for PAD on transcribed speech
S - 2. Convolution
Flndlngs 1. Flatten
. . . o feat map_ 1 2. ly d t
e word embeddings help most when word overlap is significant feat_map_2 SPRY TR
_ o . . . feat map 3
e this tends to lead to overfitting — generalization challenging (1] [T 1]
Max Pooling Feed-forward
MOdEI dropout Y hidden layer
: : bottleneck
Required input data Concatenation othienec
e® acoustic signal (.WAV) and transcriptions ) y Pe— —*
e time-aligned at the word level Activation
(softmax) +
Convolutional Neural Network
® input matrix: frame-based acoustic features for each trigram pitch accent label
e position features indicate current word
e 2-layer convolutional neural network Experlmental Results
e 15t layer: 100 kernels, size 6 x 7 Test All results shown In accu-
e 2" |ayer: 100 kernels, size 4 x 2 Train BURNC BDC LeaP racy (%) averaged using 10-
@ dropout: p =0.2, (2 regularization BURNC fold crossvalidation and 5
: : tictembs 875 75.5 78.6
low-level riptors extr N NnSMILE [1 acous
6 low-leve d*esc pto s*e tracted using Opg S [”] embs-only 26 B -1 1 o
RMS energy™, loudness™”, smoothed FO, voicing probability, BDC Left:  within-corpus and
harmonics-to-noise-ratio, zero-crossing rate acoustic 82.3 78.0 76.3 Cross-corpus experiments
Feed-forward Network and Word Embeddings acoustictembs 82.6  81.2 775 using GloVe unigram em-
: : : : bs-onl/ /5.0 /6.0 /4.5 :
e input: for each unigram or word in trigram fZ;PS o beadings, n = 10
300-dimensional word embedding vector acouStic 826 721 805 Below: within-corpus
e pre-trained word embeddings: word2vec [2], GloVe [3] acoustictembs 777 73.0 83.5 experiments using embed—
. . . L embs-only 677 68.0 80.9 aings with and without
® used as non-trainable matrix weights in hidden layer ALL .
o | context and varying bottle-
@ dropout p =0.8, [2 regularization acoustic 86.6 774 80.8 heck Sires
e bottleneck with variable size n acoustictembs Sy 80.0
embs-only /5.2 /2.7 776
D t Corpus BURNC BDC LeaP
ata Embeddings glove w2v glove w2v glove w2v
B n University Radio New r 4 unigram
e Boston Unive Sjy adio News Corpus [4] n =10 875 876 812 80.6 83.5 83.9
27k words, 51.5% accented n =20 874 877 815 81.1 83.6 83.8
e Boston Directions Corpus (read & spontaneous) [5] trigram
19k words, 55.56% accented n = 10 8.7 877 824 811 83.9 83.6
n = 30 878 875 82.7 814 83.7 83.8

® LeaP corpus of non-native speech (read & retold stories) [6]

15k words, 43.1% accented Out-of-vocabulary words and performance on stopwords
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