

Universität Stuttgart

Effects of Adding Word Embeddings to Neural-Network-based **Pitch Accent Detection**

Abstract

Motivation

- PAD benefits from adding information from text: parts of speech, function vs. content words, word identity
- state-of-the-art deep learning methods use word embeddings to represent syntactic and semantic properties of words

- not previously used for PAD on transcribed speech Findings
- word embeddings help most when word overlap is significant
- this tends to lead to overfitting \rightarrow generalization challenging

Model

Required input data

- acoustic signal (.WAV) and transcriptions
- time-aligned at the word level

Convolutional Neural Network

- input matrix: frame-based acoustic features for each trigram
- position features indicate current word
- 2-layer convolutional neural network
 - 1st layer: 100 kernels, size 6 x 7
 - 2nd layer: 100 kernels, size 4 x 2
- dropout: p = 0.2, l2 regularization

Acoustic Features

Experimental Results

Test Train	BURNC	BDC	LeaP
BURNC			
acoustic	87.1	74.2	79.2

All results shown in accuracy (%) averaged using 10fold crossvalidation and 5 repetitions.

Sabrina

Stehwien,

6 low-level descriptors extracted using OpenSMILE [1] RMS energy*, loudness*, smoothed F0, voicing probability, harmonics-to-noise-ratio, zero-crossing rate **Feed-forward Network and Word Embeddings**

- input: for each unigram or word in trigram 300-dimensional word embedding vector
- pre-trained word embeddings: *word2vec* [2], *GloVe* [3]
- used as non-trainable matrix weights in hidden layer
- dropout p = 0.8, l2 regularization
- bottleneck with variable size n

Data

- Boston University Radio News Corpus [4] 27k words, 51.5% accented
- Boston Directions Corpus (read & spontaneous) [5] 19k words, 55.5% accented
- LeaP corpus of non-native speech (read & retold stories) [6] 15k words, 43.1% accented

acoustic+embs	87.5	75.5	78.6
embs-only	78.5	71.6	76.0
BDC			
acoustic	82.3	78.0	76.3
acoustic+embs	82.6	81.2	77.5
embs-only	75.0	76.0	74.5
LeaP			
acoustic	82.6	72.1	80.5
acoustic+embs	77.7	73.0	83.5
embs-only	67.7	68.0	80.9
ALL			
acoustic	86.6	77.4	80.8
acoustic+embs	87.0	80.6	83.4
embs-only	75.2	72.7	77.6
Corpus	BURNC	E	3DC

Left: within-corpus and cross-corpus experiments using GloVe unigram embeddings, n = 10Below: within-corpus experiments using embeddings with and without context and varying bottleneck sizes

Corpus	BURNC BDC		LeaP			
Embeddings	glove	w2v	glove	w2v	glove	w2v
unigram						
n = 10	87.5	87.6	81.2	80.6	83.5	83.9
n = 20	87.4	87.7	81.5	81.1	83.6	83.8
trigram						
n = 10	87.7	87.7	82.4	81.1	83.9	83.6
n = 30	87.8	87.5	82.7	81.4	83.7	83.8

Acknowledgements

This work was funded by the German Research Foundation DFG (SFB 732, A8).

- F. Eyben, F. Weninger, F. Groß, and B. Schuller. |1| Recent developments in opensmile, the Munich open-source multimedia feature extractor. In Pro- [4] ceedings of the 21st ACM international conference on Multimedia, 2013.
- T. Mikolov, K. Chen, G. Corrado, and J. Dean. Ef- [5] |2| ficient estimation of word representations in vector space. In Proceedings of the Workshop at ICLR, 2013.
- [6] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In

Empirical Methods in Natural Language Processing (EMNLP), 2014.

- M. Ostendorf, P. Price, and S. Shattuck-Hufnagel. The Boston University Radio News Corpus. Technical Report ECS-95-001, Boston University, 1995.
- J. Hirschberg and C. H. Nakatani. A prosodic analysis of discourse segments in direction-giving monologues. In 34th annual meeting of the ACL, 1996.
- J.-T. Milde and U. Gut. A prosodic corpus of nonnative speech. In Speech Prosody, 2002.

Out-of-vocabulary words and performance on stopwords

word2vec omits stopwords

a, and, of, to

OOVs represented as vector of ones

	BURNC	BDC	LeaP
baseline	98.2	88.9	86.9
GloVe	98.2	92.7	94.2
word2vec	97.8	92.7	94.3

accuracy (%), unigram emb., n = 10

	BURNC	BDC	LeaP
GloVe OOV			
tokens	233	19	4
types	64	11	4
accent rate	93%	74%	50%
word2vec OOV			
tokens	3375	2496	1822
types	231	66	6
stopword rate	70.5%	87%	99.9%
accented stopwords	3%	13%	6%
accented remaining	79 5%	83%	100%