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 Notes Logic II.

IMS Stuttgart.
H. Kamp

These notes contain the material covered in the second level logic
course which has been offered at the Institut für Maschinelle
Sprachverarbeitung of the University of Stuttgart on an annual basis
since 1992.  The course is aimed at students who are familiar with the
notation and use of the first order predicate calculus but have had little
or no previous exposure to metamathematics.

Chapter I presents the syntax and model-theoretic semantics of
classical first order logic and an axiomatic ("Hilbert style")
characterization of first order deduction.  The central aim of this
Chapter is to establish the soundness and completeness of this
deduction system, and thus the computability of the model-theoretic
concepts of logical validity and logical consequence.  The Chapter
concludes with some easy corollaries of the Completeness Theorem
(Compactness Theorem, Downward Skolem-Löwenheim Theorem) and
the definition of the concepts of model isomorphism, elementary
equivalence  and of a first order theory.  The Chapter closes with
Robinson's preservation theorems for pure existential and for !" -
sentences (sentences in which a quantifier-free formuila is preceded by
a quantifier prefix consisting of a block of universal quantifiers
followed by a block of existential quantifiers).

Chapter II presents a number of examples of first order theories - the
theory of linear orderings, the first order theory of groups, the theories
of Boolean Algebras and Boolean Lattices, the theory of first order
Peano Arithmetic and the theory of real closed fields - and discusses
some of their salient model-theoretic properties.  The chapter also
presents certain fragments of 1-st order predicate logic:, viz. Equational
Logic (with a proof of Completeness for the equational Calculus and of
Birkhoff's preservation theorem for equational sentences) and a
version of feature logic. Thirdly, the Chapter contains a section on the
theory of definitions (with Beth's Definability Theorem and Craig's
Interpolation Theorem).

Chapter III is concerned with set theory.  Set theory too is presented as
a first order theory, more specifically, in the form of the so-called
Theory of Zermelo-Fraenkel. But in this case the concern is not just to
present yet another theory of first order logic, but also to develop, on
the basis of the ZF axioms, those parts of set theory which are needed
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when set theory is used as framework for the formalisation of
metamathematics - and more particularly those parts of
metamathematics that are discussed in the two preceding chapters.

These three chapters are devoted exclusively to the classical first order
predicate calculus.  For anyone familiar with the history of symbolic
logic over the past century this won't come as much of a surprise.  In
fact, many textbooks on mathematical logic have first order logic for
their sole subject, and this is more or less the norm for introductions
to symbolic logic.  The reason for this is not only that most of the
central results in formal logic pertain to first order logic, and that
those pertaining to other systems often presuppose or build upon
these; it is also a reflection of the mostly tacit but widespread belief
that first order logic is the logical system par excellence - that it ithe
best candidate we have for the position of 'the universal, all
compassing logical formalism' - for the position of characteristica
universalis  in the sense of Leibniz' - a view that gets support from the
fact that all other logical systems for which there exist precise
definitions can be reduced, in some way or another, to the system of
classical first order logic.

As a matter of fact the predominance of first order predicate logic is
much less pronounced today than it was, say, thirty or forty years ago.
There are several reasons for this, all connected with applications of
formal logic in domains which forty years ago didn't even exist, or were
still in their early development.  Most important in this connection has
been the use of mathematical logic in various branches of computer
science, such as the theory of programming languages, the theory of
communicating protocols that regulate parallel processing, programme
verification and chip design validation.  A second important domain of
application is Artificial Intelligence (if, that is, AI is classified as a
discipline that is distinct from Computer Science rather than as a
branch of it). And lastly the variety of logical systems has grown
through the use of formal logic in the semantics of natural language.

These developments have led to a rich landscape of logical formalisms.
In this landscape classical first order predicate logic still holds a central
place, but it is no longer one which dominates in quite the way it did in
decades past.

In the light of this, exactly what place first order logic should be seen as
occupying within this landscape has become a question that can no
longer be ignored, and that has practical as well as purely philosophical
implications. And even in an introductory text like this one it is
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appropriate that it should be asked at some point.  But the further
question that poses itself then is: When? On the one hand much could
said for putting the discussion of this question up front; for after all it
it is what can be said to this question which ultimately motivates the
choice of the topics that will be dealt with.  What speaks against this,
however, is that many of the issues that should be raised in an
exploration of the wider landscape are directly connected with the
formal results that the text will present and so will be understandable
only to a reader to whom the contents of bulk of the text (consisting of
the first three chapters) are familiar.  Believing that this last
consideration far outweighs the first, I decided to postpone the
discussion about hte relationship of classical first order logic to other
logical systems till the very end. oIt has been made the subject of a
separate chapter, Ch. 4.

[N.B. this chapter still needs to be added.]

Chapter I

1.1  Syntax, model theory and proof theory of classical first
order predicate logic

It is assumed that the reader has some basic familiarity with the
predicate calculus. There should be an awareness of how predicate
logic is used in simple formalisation problems, e.g. the formalisation of
mathematical structures such as orderings or Boolean algebras, and in
the symbolisation of sentences and arguments from natural languages.
Given this assumption it seems justified to proceed briskly with the
presentation of the syntax and model theory of first order logic.  In
particular, we forego any informal explanation of what first order
formulas 'mean'.

In fact, for a reader with antecedent exposure to the predicate calculus
there won't be anything of substance in this presentation of the syntax
and semantics of first order logic.  Nevertheless, such a presentation
cannot be dispensed with. Definitions of first order tend to vary in their
details and for what is to come it must be clear which version is at
issue.  Moreover, it will be crucial for what follows that our
characterisations of the syntax and semantics of our system are given
with the formal rigour and precision none of the results that form the
substance of these notes could be proved with the required logical
rigour.  For nearly all these results are results about  the logical system
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itself.  So exact proofs must be able to refer to exact definitions of the
structures, objects and relations that are their targets.

One of the choices that have to be made in specifying the syntax and
semantics of first order logic is the following:  We can either (i) define
a single formal system, with a fully fixed vocabulary and fully fixed sets
of terms and formulas that can be built from it, or (ii) we can define
first order logic as a family of  'first order languages', which will - while
much like each other since they are all languages of first order logic -
nevertheless differ form each other in one respect, viz. their so-called
'non-logical' vocabularies (roughly speaking; the part of their
vocabularies which consists of their 'content words').  It has turned out
that this second option has important conceptual and technical
advantages over the first, which is why it is usually chosen when the
focus is on the mathematical properties of first order logic.  For this
reason it is also the option that has been chosen here.

1.1.1 Syntax

The languages of first order predicate logic - or first order languages,
as we will call them - differ from each other only in their non-logical
vocabulary, in the predicates and functors which enable them to
express contingent propositions about any particular subject matter.
But they all share the logical vocabulary of first order logic, and with
that the general rules for building complex expressions from simpler
ones. We begin with the specification of this common logical
vocabulary.

Def. 1 The logical vocabulary of first order logic consists of the
following symbols:

( i ) (individual) variables: v1, v2, v3, ... (sometimes we also use
    the letters x, y, z, ... as 

         symbols for variables)
( i i ) connectives: , &, v, ,   
( i i i) quantifiers:  , 
( iv) identity:  =

Each language of first order predicate logic includes the logical
vocabulary listed in Def. 1.  In addition it has a certain non-logical
vocabulary, and as far as this vocabulary is concerned first order
languages differ.
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What exactly are the symbols that the non-logical vocabularies of first
order languages consist of?  Here there are two different policies we
can follow.  We can either specify a fixed stock of symbols in advance -
enough to go around for any first order language we might wasnt to
consider, and then define each individual language in terms of the
subset of this total supply that constitutes its non-logical vocabulary.
But we can also take a more liberal line.  Instead of specifying one fixed
stock of possible non-logical symbols in advance, we can leave it open
what the non-logical symbols of any given first order are like.

This second option, which has certain advantages that cannot be
properly explained at this point1, is the one we adopt.  This means
however that we cannot assume that a symbol will tell us what kind of
symbol it is - is it a predicate of the language or a function constant;
and in either case, what is its arity  (i.e. the number of its arguments)? -
simply because of its form.  So the information what kind of symbol it
is must be supplied explicitly and separately: each symbol must come
with a signature,  as terminology has it, in which this information is
supplied. There are various ways in which the information that
signatures must provide could be encoded. For the case at hand, where
we are only dealing with the first order predicates and functors, we
have chosen the following encoding:  A signature is a pair <s,n>, where
s indicates whether the symbol of which it is the signature is a
predicate or a functor and n is the constant's arity.  This entails that
the non-logical vocabulary of any first order language L can be
specified as a function f whose domain is the set of non-logical
constants of L and for each #  in the domain f(# ) = <s,n> is the signature
of # .  Furthermore, since it is only in regard of their non-logical
vocabularies that first order languages can differ from each other, they
are, as first order languages, fully identified by their non-logical
vocabularies.  Thus it is formally possible to actually identify them with
their signatures.  This identification proves very convenient in practice,
and so we have adopted this stratagem.

The terms and formulas of any first order language L are built from on
the one hand the symbols of their own non-logical vocabulary and on
the other hand the logical symbols of first order logic, given in def. 1,
that L shares with all other first order languages. It should be intuitively
clear, therefore, that confusion might arise if there were overlaps

1 The point is this.  In certain applications it is important not to have to put
any upper bound on the size of the set of non-logical symbols of a language.  This
desideratum is incompatible with the first approach.  For any set of symbols fixed
in advance would impose an upper bound on the size of languages which would
exclude some langauges that would be needed.
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between the non-logical vocabulary of any language L and the
vocabulary of Def. 1.  We will therefore exclude this possibility.

These considerations lead us to the following definition:

Def. 2    A language of first order predicate logic is a function L from
a set of "symbols" (the non-logical constants of L) to the
signatures  (or logical types) of those symbols, where a
signature  is a pair of the form <# ,n>, where

(i) #  is either p (for "predicates") or f (for "functors") and
( i i ) n is a natural number which specifies the arity  (number of 

argument places) of the symbol.

The set of non-logical constants of L, DOM(L), must be
disjoint from the logical vocabulary specified in Def. 1-

Terminology: if L(# ) = <f,0>, then #  is an individual constant of
L; if L(#) = <p,0>, then #  is a propositional constant
of L.

Examples: {i)  if L(#) = <p,2>, then #  is a 2-place predicate of L;
 (ii) if L(# ) = <f,1>, then #  is a 1-place functor of L; etc.

The well-formed expressions of a first order language L, its terms a n d
its formulas , are built from its non-logical vocabulary together with the
fixed logical vocabulary of Def. 1.  We take it that the definitions of the
terms and the formulas of L are familiar in substance and present them
without further comment.  The same goes for the distinction between
free and bound occurrences of variables in terms and formulas.

Def. 3

1 . The  terms of a language L are defined as follows:

( i ) each variable is a term .
( i i ) if g is a functor with signature <f,n> and t1 ,....,tn  are 

terms, then g(t1 ,....,tn ) is a term of L .

2 . The formulas of L are defined thus:

( i ) If P is predicate of L with signature <p,n> and t1,....,tn
are terms, then P(t1 ,....,tn) is a formula of L .
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(i i ) If A, B are formulas of L, then A, (A & B), (A v B),
(A  B) and (A  B) are formulas of L.

(iii) If A is a formula of L, then ( vi)A and ( vi)A  are 
formulas of L .

(iv) If t1  and t2 are terms of L,  then t1 = t2 is a formula of 
L.

N.B. For any occurrence of a formula ( vi)A (( vi)A) the
corresponding occurrence of A is said to the scope of
the corresponding occurrence of ( v i) (( v i)) .

Def. 4 (Free and bound occurrences of variables)

( i ) Every occurrence # of a variable vi in a term $  is a free
occurrence of vi in $ .

( i i ) Every occurrence of a variable in an atomic formula is 
free  in that formula.

(iii) If #  is a free occurrence of the variable vj in A, then #  is
also a free occurrence in A .

( iv) If #  is a free occurrence of the variable vj in A or in B,
then #  is also a free occurrence in (A & B), (A v B),
(A  B) and (A  B).  

(v) If #  is a free occurrence of the variable vj in A, then it is 
free in ( vi)A and ( vi)A, provided i  j.

(v i ) No occurrence #  in a formula  A is free in A unless
this follows from clauses (ii)- (v).

Every occurrence #  in a term or A which is not free in A is called
a bound  occurrence of # in A.  

Note that Def. 4 entails that an occurrence of vj in A is always a bound
occurrence in ( vj)A and in ( vj)A.

Def. 5  A closed  expression of L is an expression (i.e. term or  
 formula) of L which has no free occurrences of variables.  

The closed formulas of L are also called the sentences of L.
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1.1.2  Models, Truth, Consequence and Validity

What was assumed in Section 1.1 regarding the syntax of first order
languages - that the definitions are assumed to be familiar in substance
- also goes for their semantics.  Each first order language L determines a
class of possible models for L. For each such model M we can define (i)
the set of possible assignments of objects from M to the variables of
first order logic and (ii) the value of any expression (term or formula)
of L in M relative to any assignment a  in M.  (We say that the formula A
is satisfied by in M if it gets the value 1 in M relative to a . (1 represents
the truth value TRUE.) The values of closed terms and sentences are
independent of what assignment is chosen.  In particular, we can speak
simply of the truth value of any sentence A of L in any model M for L:
either A is true in M or A is false in M.

The definitions of satisfaction and truth in a model lead to the
intuitively natural characterisations of logical validity and logical
consequence (also sometimes referred to as (logical) entailment or as
logical implication): the formula B of L is a logical consequence of the
set %  of formulas of L iff for every model M for L and every assignment
a in M, if every C & % is satisfied by a  in M, then B is also satisfied by a
in M.  And B is logically valid when it is a logical consequence of the
empty set of premises, i.e. if it is satisfied in all M by all a .

We take it that after this brief introduction the following definitions
will be self-explanatory.

Def. 6

1 . A model for L is a pair <U,F>, where

( i ) U is a non-empty set
( i i ) If L(g) = <f,n>, then F(g) is an n-place function from U 

into U
(iii) If L(P) = <p,n>, then F(P) is an n-place function from U 

into {0,1}.

2 . An assignment in a model <U,F> is a function from the set of 
variables into U.
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Def. 7

1 . The value of a term t of L in a model M = <U,F> under  an 
assignment a, [[t]]M,a , is defined thus:

( i ) [[vi]]M,a = a(vi)
( i i ) [[g(t1,....,tn)]]M,a  = F(g) ([[t1]]M,a ,...,[[tn]]M,a)

2 . The truth value of a formula A of L in model M under  
assignment a , [[A]]M,a , is defined as folows:

( i ) [[P(t1,....,tn)]]M,a  = F(P) ([[t1]]M,a ,..., [[tn]]M,a)

   1    if [[A]]M,a = 0
( i i ) [[ A]]M,a =

  0    otherwise

    1    if [[A]]M,a = [[B]]M,a = 1
(iii) [[A & B]]M,a   =

    0    otherwise

    1    if [[A]]M,a = 1 or [[B]]M,a = 1
( iv) [[A v B]]M,a   =

    0    otherwise

    1    if [[A]]M,a = 0 or [[B]]M,a = 1
( v ) [[(A  B)]]M,a =

    0    otherwise

    1    if [[A]]M,a = [[B]]M,a
(v i ) [[(A  B)]]M,a =

    0    otherwise

    1    if [[A]]M,a[u/vi] = 1 for every u & U
(vii) [[( vi)A]]M,a =

   0    otherwise

    1    if [[A]]M,a[u/vi] = 1 for some u & U
(viii) [[( vi)A]]M,a =

  0    otherwise
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1    if [[ti]]M,a  = [[tj]]M,a
(ix)   [[ti = tj]]M,a  =

0  otherwise

Lemma 1:  Suppose that X is a set of variables, that every variable
that has free occurrences in the term or formula A is a
member of X and that a  and b  are assignments in the
model M such that for every variable vi & X,
a(vi) = b(vi).  Then [[A]]M,a  = [[A]]M,b

Proof: Although the proof of Lemma 1 is not difficult as proofs in
mathematical logic go, it exemplifies some of the distinctive features of
a great many proofs in this domain.  In particular it provides a good
illustration of the ubiquitous method of proof by induction, over well-
founded but not necessarily linearly ordered domains.  This is why I
eventually decided to include a quite detailed proof, breaking with an
earlier practice of leaving the proof as an exercise.

The task of the proof is to show that all members of an infinite set of
objects - here the set of all terms and all formulas of a given first order
language L - have a certain property.  In the present case this is the
property that a term or formula A of L has when it gets the same value
in any model M under assignments a  and b  in M which coincide on a
set of variables which includes all the free variables of A.  The simplest
way in which we might hope to establish this inductively is to proceed
as follows:

We fix a particular model M for the language L in question as well as a
given set of variables X and two assignments a  and b  in M such that for
all x &  X a(x) = b (x), and then prove that all terms and formulas of L
have the following property (*):

(*) [[A]]M,a = [[A]]M,b.

To show that all terms and formulas have (*) we would then proceed
inductively, i.e. by showing (i) to (iv):

(i) any atomic term A has (*);
(ii) any complex term A has (*) on the assumption that all the 

immediate constituent terms of A have (*),
(iii) any basic formula A has (*) on the assumption that all its 

constituent terms have (*); and
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( iv) any complex formula has (*) on the assumption that its 
immediate constituent formula or fomulas has/have (*).

Unfortunately this will not work.  The problem cases are the quantified
formulas, i.e. formulas of the forms ( vi) B and ( vi) B.  If we try to
show that, say, ( vi) B has (*) on the assumption that B has (*), we run
into the following difficulty:  Our assumption is that the given variable
set X contains all the free variables of ( vi) B.  This, however, does not
guarantee that X contains all variables that have free occurrences in B,
for the variable vi, which is bound in ( vi) B and thus need not belong
to X, may well be free in B.  So even if we assume that B has (*), this
assumption may be of no use, since it does not tell us anything useful
about B and the fixed X, a  and b .

Therefore, as so often in proofs of induction, we need to "push
through" the basic and recursive clauses of the definitions of term of L
and formula of L, some property (**) other than (*), and which is such
that once we know that all terms and formulas A have (**), we can
conclude that all of them also have the property asserted in the
theorem or lemma that is to be proved.  In the present case the
property which will do the trick is not all that different from the one
which the Lemma requires us to show for all terms and formulas.
(There are many inductive proofs where it is much more difficult to
find the right property for which the induction can be made to go
through; in fact, often finding this property is the real challenge of such
proofs.) We get a property (**) which works simply by quantifying
universally over the set X and the assignments a  and b , rather than
keeping them fixed ghroughout the inductive argument. In this way we
obtain enough flexibility to deal with the quantifier cases . (The
language L and the model M can still be kept fixed.)

Definition of (**).  Let a language L and a moel M for L be given.  (**) is
the following property of terms and formulas A of L:

(**) For every set of variables X which contains all the free variables of
A and every two assignments a  and b  in M such that for all x & X , a(x) =
b(x), we have [[A]]M,a = [[A]]M,b .

The proof of (i)-(iv) above for the property (**) is for the most part
uneventful-to-boring.  The only slightly more interesting cases are
those involving the quantifiers.  (It is there where the difference
between (**) and (*) will pay off.)
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( i ) According to Def. 3.1. i the atomic terms of L are the variables of
first order logic.  So suppose that A is the variable vi.  Let X, a  and b b e
such that together with A they satisfy the conditions of (**) - i.e. vi & X
and a  and b agree on the variables of X.   So in particular a (vi) = b (vi) .
By Def.7.1.i we have

[[vi]]M,a  = a(vi)  and [[vi]]M,b  = b(vi) .

So we get: [[A]]M,a = [[vi]]M,a = a(vi) = b(vi) = [[vi]]M,b  = [[A]]M,b .

( i i ) Suppose that A is a complex term of L.  Then, according to
Def.3.1.ii, A is of the form fni(t1 , ..., tn).  Suppose that A is of this form
and that t1 , ..., tn  have (**).  Again choose X, a  and b as under (i).
Since X contains all the free variables of A, X contains all the free
variables of tj, for j = 1,..., n.  So since the tj all have (**), and X, a  and
b  fulfill together with tj the conditons of (**),  we have

( 1 )  [[tj]]M,a  = [[tj]]M,b   (for tj = 1,..., n)

According to Def. 7.1.ii we have:

( 2 ) [[fni(t1, ..., tn)]]M,a  = FM (fni)([[t1]]M,a , ..., [[tn]]M,a)

Because of (1) the right hand side of (2) equals
FM (fni)([[t1]]M,b , ..., [[tn]]M,b ) and this is, by Def, 7.1.ii, the same as
 [[fn i(t1 , ..., tn)]]M,b .

(i i i) According to Def. 3.2.i the atomic formulas of L come in two
varieties:  (a) Pn i(t1 , ..., tn ) and (b) t1  = t2 .

Suppose A is of the form Pni(t1 , ..., tn) and that (**) holds for
t1 , ..., tn .  Then we get, just as in case (ii):

[[Pni(t1, ..., tn)]]M,a  = FM (Pni)([[t1]]M,a , ..., [[tn]]M,a) =
FM (Pni)([[t1]]M,b , ..., [[tn]]M,b) = [[Pni(t1, ..., tn)]]M,b .

The case where A has the form t1  = t2  is just like the last one and is left
to the reader.

( iv) A is a complex formula.  Here there are quite a few possibilities
for the form of A:  A could be: a negation B, a conjunction B & C, a
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disjunction, an implication, a biconditional, a universally quantified
formula or an existentially quantified formula.  We consider three of
these possibilities: (a) A is of the form B, (b) A is of the form B & C
and (c) A is of the form ( vi)B .

( a ) Suppose that A is of the form B and that B has (**).  Let X, a , b
be chosen so that A, X, a , b satisfy the conditions of (**).  Since the
free variables of A are the same as the free variables of B, the
conditions of (**) are also satisfied by B, X, a , b .  So since B has (**),
[[B]]M,a = [[B]]M,b .  So we have, using Def. 7.2.ii:

[[A]]M,a = 1 iff [[ B]M,a = 1 iff [[ B]M,a = 0 iff [[ B]M,b = 0 iff
[[ B]M,b = 1 iff [[A]]M,b = 1.

( b ) Suppose that A is of the form B & C and that B and C both have
(**).  Again, let X, a , b be chosen so that A, X, a , b satisfy the
conditions of (**).  The free variables of B are among the free variables
of A and thus included in X; and the same holds for C.  So since b and C
have (**), we have

( 3 ) [[B]]M,a = [[B]]M,b and [[C]]M,a = [[C]]M,b.

So we have:

[[A]]M,a = 1 iff [[ B & C]M,a = 1 iff [[ B]M,a = 1 and [[ C]M,a = 1 iff
[[ B]M,b = 1 and  [[ C]M,b = 1 iff [[ B & C]M,b = 1 iff [[A]]M,b = 1.

( c ) Suppose that A is the formula ( vi)B and that B has (**).  Again,
let X, a , b be chosen so that A, X, a , b satisfy the conditions of (**).
Suppose that y is a free variable of B.  Then either y is the variable vi or
else y is a free variable of A and thus y & X.  So in either case y & X  {vi} .
According to Def. 7.2.vii,

[[A]]M,a = 1 iff [[( vi)B]]M,a = 1 iff for all u & UM  [[(B]]M,a[u/vi] = 1.

We observe the following:

( 4 ) B, X  {vi} and the assignments a[u/vi] and  b[u/vi] satisfy t h e
conditions of (**)
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To show (4) we first recall that X  {vi} contains all the free variables of
B.  Secondly we show that for any free variable y of B:
 a [u/vi](y) =  b [u/vi](y).  Recall that there are two possibilities for y.
either y = vi or (y '  vi  and y & X).  In the first case we have:

 a [u/vi](y) = a [u/vi](vi) = u = b [u/vi](vi) = b [u/vi](y) .

In the second case, since y '  vi,  a [u/vi](y) = a (y) and b [u/vi](y) =
b (y). Also, since a and b  coincide on the variables in X and y & X, a(y) =
b (y ) .
So we have: a [u/vi](y) = a (y) = b (y) = b [u/vi](y).  This concludes the
proof of (4).

We are now in a position to complete the proof of (iv.c).

[[A]]M,a = 1 iff [[( vi)B]]M,a = 1 iff for all u & UM  [[(B]]M,a[u/vi] = 1
iff (using (4) and the fact that B has (**)) for all u &  UM  [[(B]]M,b [u/vi]

= 1 iff [[( vi)B]]M,b  = 1 iff [[A]]M,b  = 1.

The proofs of the other cases under (iv) are trivial variants of the
proofs of cases (a), (b) and (c).

This completes the proof of Lemma 1. q.e .d.

1.1.3         Interlude about Proofs by Induction

It might be argued that strictly speaking the proof of Lemma 1 is not
yet complete.  For we are still left with the inference from all the basic
and recursive steps of the proof to the conclusion that (**) is true of all
terms and all formulas of L.  This last step is normally left out in
inductive proofs because it always rests on the same general principle.
The principle is easiest to explain in connection with induction on the
natural numbers (which incidentally is also the form of induction that
tends to be familiar to non-mathematicians  A well-known example of a
proof by induction that all natural numbers have a certain property P is
that where P is the property which the number n has if the sum of the
numbers from 0 to n is equal to 1/2(n.(n+1):

n
( 5 ) (   i  = 1/2(n.(n+1)

        i= 0
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The typical way to prove this is to argue as follows:

(i) The statement (5) holds for n = 0.  For in that case both sides 
are equal to 0.

( i i ) Suppose that the statement (5) holds for n = k.  Then (5) also 
holds for n = k+1.  For
k+1     k
(   i  =  (  i + (k+1) = 1/2(k.(k+1)) + (k+1) =

         i=0   i= 0

1/2((k.(k+1)) + 2.(k+1)) = 1/2(k2  + 3k + 2) = 1/2(k+1)(k+2)

From (i) and (ii) we can infer that (#) holds for all n.  Why?  Well, one
way to argue is as follows: (i) shows that (#) holds for the first natural
number 0.  Combining this information with (ii) leads to the conclusion
that (#) holds for 1.  Combining that information with (ii) we conclude
that (#) holds for 2; and so on.

We can also turn this argument upside down: Suppose that (#) does not
hold for all natural numbers n.  Then there must be a smallest number
no for which (#) fails.  Because of (i), no  must be different from 0.  So
there must be a number m such that no = m+1.  But then, since no  is
the smallest number for which (#) does not hold, (#) holds for m.  So
by (ii) it must hold for m+1, that is for no: contradiction.  So we
conclude that (#) holds for all n.

The case of our proof of Lemma 1 is somewhat more complex, but it is
in essence like the one just considered.  In the case of Lemma 1 the task
is to show that all terms and formulas of L satisfy a certain condition
(our condition (**)).  That the basic and inductive clauses (of which we
proved a representative selection) together entail that all terms and
formulas A have (**) can be argued along similar lines as as we followe
in proving (5).  Suppose that there was a term or formula A for which
(**) does not hold.  Then among those terms and/or formulas there
must be at least one that is minimal w.r.t. (**), i. e. a term or formula
A o which itself does not have (**) but which is such that all its
immediate constituent terms or formulas have (**).  But then we get a
contradiction, just as in the natural number case:  Ao can't be an
atomic term, for that would contradict the base case of the proof.  So
A o must have immediate constituents, all of which do have (**).  But
then we have a contradiction with that part of the proof which
concerns the particular form of Ao.
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A more abstract way of stating the validity of the method of proof by
induction is this:  Suppose that Y is a set of objects and that there is a
partial ordering < of Y which is well-founded , i.e. which has the
property that if Z is a non-empty subset of Y, then Z must contain at
least one <-minimal  element; that is, there must be at least one element
z of Z such that for all y & Y such that y < z, it is the case that y & Y\Z.
To establish that all members of Y have a certain property P it is then
enough to show the following:

( 6 ) Let z & Y and suppose that for all y < z, P(y).  Then P(z).

It is easy to see that the binary relation which holds between two
between terms and/or formulas A and B of L iff A is a constituent of B
is a well-founded partial ordering of the set of all tems and formulas of
L.  So what our proof of Lemma 1 amounts to is that (6) holds for the
case where < is the constituent relation between terms and formulas of
L and P is the property (**).

1.1.4         Continuation of 1,1,2

The most important consequence of Lemma 1 is that the values of
closed terms and closed formulas (i.e. sentences) are independent of
the assignment.

Def.8 A sentence A of L is said to be true in a model M iff for 
all assignments a in M, [[A]]M,a = 1.

Notation.  It follows from Lemma 1 that when A is a sentence, then for
all assignments a  and b , [[A]]M,a  = [[A]]M,b .  So in this case we may,
without risk of confusion, suppress mention of the assignment.  We will
often do this and write " M  A" instead of "[[A]]M,a  = 1 for some a" .
More generally, when the free variables of A are among v1, ..., vk, and
a1, ..., ak are elements of the model M, we will write
"M  A[a1, ...,ak]" in stead of " [[A]]M,a  = 1 for some assignment a  in M
such that a (vi) = ai for i = 1, ..., k".  Again the intuitive justification is
given by Lemma 1, which guarantees that if A is as described and a  and
b  are assignments which both assign a1, ..., ak  to v1, ..., vk , then
[[A]]M,a = [[A]]M,b.

Even more generally than this, in a case where the free variables of A
have been specified as x1, ..., xn, (where the xi may be any variables
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from the list v1,v2 , ... of all variables of first order logic) we will
sometimes write " M  A[a1, ...,ak]" in stead of " [[A]]M,a = 1 for some
assignment a in M such that a(xi) = ai for i = 1, ..., n".

Def.9

1 . A set of sentences %  of a language L semantically entails a 
sentence A of L (or: A is a (logical/semantic) consequence of % ; 
in symbols: %%%% A ) iff for every model M for L the following is
t rue :

   If every member B of %  is true in M, then A is true in M.

More generally, a set of formulas %  of L (semantically) entails
a formula A iff for every model M for l and every assignment
a  in L, if for all sentences B in % [[(B]]M,a  = 1, then [[A]]M,a  =1.

2 . A formula A is valid iff A .

N. B.  According to Def. 9.2 a formula A of L is valid iff for every model
M for L and every assignment a in L, [[A]]M,a = 1.

Exercise:  Show this!

The following Lemma 3 states an important relation between the value
of a term t or formula B with free occurrences of a certain variable vi
and the value of the result of substituting a term t' for the free
occurrences of vi in t or B.  In order to formulate the second part of
the Lemma we need a further definition.

Def. 10.  ( i ) Let B be a formula, #  some particular free occurrence
of the variable vi in B and let t be some term.  Then #
is said to be free for t in B iff no variable occurring in t
becomes bound in B when t is substituted for # in B.

( i i ) Let B, t be as under (i).  Then the variable  vi is said to
be free for t in  B iff every free occurrence of vi in B is
free for t in B.
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Lemma 2   (i)   Let t, t' be any terms of L, let M be any model for 
L and a  an assignment in M. Then:

[[ t[t'/vi] ]] M,a    =   [[t]] M,a[ [[t']]M,a  /vi ]

( i i ) Let B be a formula of L, let M, t' and a  be as under (i) 
and suppose that vi is free for t' in B. Then

[[ B[t'/vi] ]] M,a    =   [[ B ]] M,a[ [[t']]M,a  /vi ]

Proof. We first prove (i) by induction on the complexity of terms.

(a).  Let t be a variable vj.  First suppose that j = i. Then
t[t'/vi] =  vi[t'/vi] = t'.  So we have:

[[ t[t'/vi] ]] M,a   = [[t']] M,a   = [[vi]]M,a[ [[t']]M,a  /vi ].

Now suppose that j ' i.  Then t[t'/vi] =  vj[t'/vi] = vj.  So

[[ t[t'/vi] ]] M,a   = [[vj]] M,a  = a(vj).   Moreover, if j ' i, then

a (vj) = (a [[[t']]M,a /vi])(vj).  So

[[ t[t'/vi] ]] M,a   = [[vj]] M,a  = [[vj]] M,a[ [[t']]M,a  /vi ] =
[[t]] M,a[ [[t']]M,a  /vi ]

(b)  Suppose that t is the term g(t,...,tn ) and suppose
that for k = 1,..., n. (i) holds with tk instead of t,.  It is easily
seen that (g(t1 , ..., tn ))[t '/v i] = g(t1 [t'/v i], ..., tn [t'/v i]).  So

[[ t[t'/vi] ]] M , a    = [[ (g(t1, ..., tn))[t'/vi] ]] M , a    =
[[ g(t1 [t'/v], ..., t1 [t'/vi])]] M , a    =
(FM (g))([[t1[t'/vi]]]M,a , .., [[tn[t'/vi]]]M,a ) =
(FM (g))([[t1]]M,a', .., [[tn]]M,a') ,
where a'  is the assignment a [ [[t']]M,a  /vi].  B u t
(FM (g))([[t1]]M,a', .., [[tn]]M,a') =
[[g(t1 , ..., tn)]] M,a' .
This concludes the proof of (i)
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We now prove (ii) by induction on the complexity of 
formulas .

(a) Let B be the formula P((t1 , ..., tn).  We proceed
essentially as under (i.b):
[[ B[t'/vi] ]] M,a    = [[ (P(t1 , ..., tn))[t'/vi] ]] M,a    =
[[ P(t1 [t'/v], ..., t1 [t'/vi])]] M , a    =
(FM (P))([[t1[t'/vi]]]M,a , .., [[tn[t'/vi]]]M,a) =
(FM (P))([[t1]]M,a', .., [[tn]]M,a') =
[[ (P(t1, ..., tn))]] M,a' , where a' is as above.

(b)  Suppose that B is a formula whose main operator is a
sentence connective.  We consider just one case, that where
B is a negation, i.e. B = C for some C.  We assume that (ii)
holds for C.  Clearly we have that B[t'/vi] = ( C)[t'/vi] =

(C[t'/vi]).  So [[ B[t'/vi] ]]M,a  = 1 iff [[ (C[t'/vi])]]M,a  = 1
iff [[ C[t'/vi] ]]M,a  = 0 iff (by the induction assumption)
[[C]]M,a[[[t']]M,a/vi] = 0 iff [[ C]]M,a[[[t']]M,a/vi] = 1 iff
[[B]]M,a[[[[t']]M,a/vi] = 1.

(c)  Now suppose that B begins with a quantifier.  We only
consider the case where B is of the form ("vj)C.  Once more
we have to distinguish between the case where j = i and that
where j ' i.  When j = i, then (("vj)C)[t'/vi] = ("vj)C since in
that case vi has no free occurrences in ("vj)C.  But for this
very same reason we have that [[("vj)C]] M,a  =
[[("vj)C]] M,a[[[t']]M,a/vi ] (by Lemma 1, since a  and
a[ [[t']]M,a  /vi] coincide on the free variables of ("vj)C 
(because any free occurrences of vj in C are bound by the 
initial quantifier ("vj)). This concludes the argument for the
case that j = i.

The second case is that where j ' i.  This case has to be
subdivided once more into two subcases, (i) vi has no free
occurrences in C and (ii) vi has at least one free occurrence
in C. In case (i) we have, as in the case already considered
that (("vj)C)[t'/vi] = ("vj)C.  Again a  and a[ [[t']]M,a  /vi]
coincide on the free variables of ("vj)C, since in fact they
already coincide on all the free variables of C. So the
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conclusion follows as above.

Now suppose that vi has free occurrences in C. Since j ' i .
the freee occurrences of i in C are also free occurrences in
B. By assumption vi is free for t' in B.  This means that the
variable vj cannot occur in t', for if it did, then its
occurrences in t' would be bound in B (viz. by B's initial
quantifier ("vj)) when t' is substituted for the free
occurrences of vi in B.
Furthermore we observe that (("vj)C)[t '/vi] = ("vj)(C[t'/vi]) .
From the Truth Definition clause for " we get:

[[B[t'/vi] ]] M,a  = 1 iff [[ (("vj)C)[t'/vi] ]] M,a  = 1 iff
[[("vj)(C[t'/vi])]] M,a  = 1 iff

for some d & UM  [[C[t'/vi] ]] M,a[d/vj] = 1     (*)

By the induction assumption,

[[C[t'/vi] ]] M,a[d/vj] = [[C]] M,a'',

where a''  is the assignment a [d/vj] [ [[t']]M,a  [d/vj]/vi] .
We now make use of the fact that vj does not occur in t'.
Because of this [[t']]M,a  [d/vj] = [[t']]M,a .  So a'' =
a [d/vj] [ [[t']]M,a  /vi] = a [ [[t']]M,a  /vi] [d/vj], since the
order in which the assignment changes in a  to, respectively,
vi and vj are carried out is immaterial.  (These changes are
independent from each other.) This means that we can
rewrite (*) as:

for some d & UM  [[C]]M,a[ [[t']]M,a /vi][d/vj] = 1 (**)

By the Truth Definition clause for "  (**) is equivalent to

[[("vj)C]]M,a[ [[t']]M,a /vi] = 1.  In other words,
[[B]]M,a[ [[t']]M,a/vi] = 1.

Since the above transformations are all reversible, we have
thus shown that

[[ B[t'/vi] ]] M,a  = 1 iff [[B]]M,a[ [[t']]M,a /vi] = 1.
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This concludes the proof for the case where B is of the form
(("vj)C, and therewith of part (ii) of Lemma 2.

  q.e.d.

Below we will need in particular a special case of Lemma 2, stated in
Corollary 1, in which the term t' is an individual constant c.  (The proof
of this special case is somewhat simpler, because there is no need to
worry about proper substitution (i.e. about vi being free in B for the
term that is to be substituted for it in B); since c contains no varaibles,
v i will be free for c in b no matter what.)

Corollary 1  (i) Let t be any term of L, c any individual constant of 
L, M any model for L and a  any assignment in M.  

Then:

[[ t[c/vi] ]] M,a    =   [[t]] M,a[FM (c)/vi]

  ( i i ) Similarly, if B is a formula of L, and M, c and a  as 
under (i), then

[[ B[c/vi] ]] M,a   =   [[ B ]] M,a[FM (c)/vi]

Suppose that the free variables of the formula A of L are vi1,.., vin,
listed in some arbitrarily chosen order.  Let m be a model for L. Then
according to Lemma 2, any two assignments a  and b  which assign the
same objects u1,.., un of M to vi1,.., vin will assign to A the same truth
value in M.  We can make this explicit by displaying the free variables
of A, in the chosen order, as 'arguments' of A by including them in
parentheses behind A, and then fixing the truth values of A in M by
mentioning just the objects u1,.., un of M that these assignments assign
to the free variables vi1 ,.., vin .
With these specifications A turns into the expression

A(vi1,.., vin)[1,.., un ] .

Since the iinformation encoded in this expression determines a unique
truth value for A in M, we can write
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M A(vi1,.., vin)[u1,.., un ] to indicate that the assignment of
u1,.., un to satisfies A in M (i.e. that hte truth value of A under any
such assignment is 1).  This notation is quite useful in prctice and we
will make use of it occasionally.

When A is a sentence, i.e. when the set of its free variables is empty,
then, as Cor. 1 makes explicit, any two assignments in M will assign it
the same truth value.  In this case we can speak simply of 'the truth
value of A in M' and of A 'being true in M' or ' being false in M'.  We
express this formally by writing 'M A' for 'A is true in M'.
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1,1,5   Axioms, Rules. Proofs and Theorems.

Def.10

1 . An axiom of L is any formula of L that  has one of the forms A1 -
A13:

A1. A  (B  A)
A 2. (A  (B  C))  ((A  B)  (A  C))
A3. ( A B)  (B  A)
A4. ( vi)(A  B)  (A ( vi)B),  provided vi has no free 

   occurrences in A
A5. ( vi)A  A[t/vi],  provided vi is free for t in A2

A6. (A  B)  ((B  A)  (A  B))
A7. (A  B)  (A  B)
A8. (A  B)  (B  A)
A9. (A & B)  (A B)
A10 (A v B)  ( A B)
A11 ( vi)A   ( vi) A
A12.  vi  =  vi
A13. vi  =  vj  (A  A'),  where A' results from replacing 

one occurrence of vi in A by vj and the new occurrence 
of vj in A' is free in A'

In the formulation of A5 there is reference to the notion of "vi  being
free for t in A".  Intuitively this means that t can be substituted for each
of the free occurrences of in A without this leading to free variables of
t (other than vi) being captured by quantifiers in A.
To define the concept (of vi  being free for t in A) correctly, we must
(a) distinguish between the different occurrences of expressions -
variables, terms, subformulas, quantifiers - within a given formula B,
and then (b) define the notion of the scope of a quantifier occurrence
in B.

The notion of an occurrence in a formula presupposes that different
occurrences of the same expression type - for instance, two
occurrences of the variable v1 - must be somehow distinguishable so

2 For the definition of "vi is free for t in A" see Def. 10 below.



2 4

they must be indexed, or labeled, in some way.  There are all sorts of
ways to accomplish this, some fancy, others homely.  Here we will
simply assume that each formula B can be identified as a finite string of
symbols, that is, as a function which maps some initial segment {1, ... ,
n} of the positive integers into the set of symbols of the given language
L to which B belongs.  In this way each of the symbol occurrences in B
will be assigned an identifying integer, and each larger constituent of B
can be identified with the subset of {1, ... , n} which consists of those
integers that are associated with the symbol occurrences in B that
belong to that constituent.  Among other things, identification of the
different symbol occurrences in B enables us to refer to individual
quantifier occurrences, i.e. particular occurrences of the symbol
strings "(!vi)" and "("vi)".

The definition of the notions free  and bound  rests on the fact that the
well-formed expressions (terms and formulas) of predicate logic are
syntactically unambiguous:  For each symbol string that is syntactically
well-formed (that is, each string that can be derived as an expression of
a language L by using the clauses of Def. 3.1 und 3.2) there is only one
syntactic analysis - only one way in which these clauses can be applied
to put the string together.  (Strictly speaking this is a property of Def. 3
that can and ought to be proved.  But the prooof is rather tedious and
has been omitted here.)

It is a familiar feature of definitions of syntactic structure (or
"grammars", as they are usually called, when the language in question is
a natural language) that expressions which are well-formed according
to these definitions have syntactic analyses (by virtue of the given
definition) that can be represented in the form of a tree. In the case of
formal languages (though not as a rule for natural languages) the
analysis of any well-formed expression will as a rule be unique.

Exercise:

Construct syntactic derivation trees for the formulas:

(a) ( v1)(( v1)P(v1)  P(v1) );
(b) (( v1)P(v1) & Q(v1))  ( v1)P(v1) & ( v1)Q(v1));
(c) ( v1)( v2)( v3)((R(v1,v2)  (R(v2,v3) R(v1,v3))  ((R(v1,v2)

 R(v2,v3)) R(v1,v3)).

Let  Q be an occurrence in B of the existential quantifier
expression "( v j)" (the scope of an occurrence of a universal quantifier
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expression is defined in the same way.).  Then the scope of Q in B is
that formula occurrence A such that the transition from A to the string
QA (using clause (iii) of the definition of well-formedness) is part of
the unique parse of B.

We can now define (i) what it is for a term t to be free for a
particular free occurrence v  of the variable vi in  the formula B, and (ii)
what it is for t to be free for vi in  B:

Def. 10:

( i ) t is free for v  in  B iff t contains no variable vj such that v  
belongs to the scope of any occurrence of either "( v j)" or 
"( vj)" in B;

( i i ) t is free for the variable vi in  B iff t is free in B for all free 
occurrences in B of vi.

2 .  The Inference Rules (of L) are given by the following two
schemata:

   (i)   A        A  B           A        .
         B ( vi)A

(Modus Ponens) (Universal
 Generalization)

3 . A proof in L of a formula A of L from  a set of formulas %  of L 
is a sequence A1,..., An of formulas of L such that

1 . An  = A, and
2 . for each Ai with i  n either:

(i) Ai is an axiom of L, or
( i i ) Ai &  %, or
(iii) there are j, k < i such that  Ak =  Aj  A i, or
( iv) Ai = ( vm )B, there is a j < i such that Aj = B and 

vm does not occur free in any member of % which 
occurs as a line Ar with r  j.

We write:  %%%%    L A for "there exists a proof in L of A from %" .
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Lemma 3: Supppose that L  L' (i.e. the function L' extends the f
unction L; in other words, that each non-logical constant of
L is also a non-logical constant of L' and with the same
signature), that A is a formula of L and %  a set of formulas of
L and that there is a proof of A from %  in L'.  Then there is a
proof of A from %  in L.

Proof. Suppose that A is a sentence of L and % a set of sentences of
L and that P is a proof of A from % in some language L'.  Take

   some fixed sentence B of L, e.g. ( v1) v1 = v1, and replace
every atomic formula occurring in P which contains a non-
logical constant that belongs to L' but not to L by the
sentence B.  It is easily verified that the sequence of
formulas P' into which P is converted by these
transformations is a proof of A from % in L. q.e .d.

Lemma 2 justifies dropping the subscript "L" from the expression "% L
A".  So henceforth we will write simply "%  A" to express that there
exists a proof of A from % .

The central theoretical result about first order predicate logic is that
semantic consequence can be captured by a notion of provability such
as the one defined here.  (This is one of several fundamental results
that logic owes to the greatest logician of the 20-th century, the Czech-
Austrian mathematician Kurt Gödel).  The equivalence has two sides,
usually referred to as the soundness  and the completeness   (of the
concept of proof in question):

1.2   Soundness and Completeness of the axiomatic proof
system of Section 1.1.3

Theorem 1 (Soundness): If %  A, then % A
Theorem 2. (Completeness): If % A, then %  A

Proof of Theorem 1.  Soundness is proved by showing:

(i) every formula B which has the form of one of the axioms has the 
property (*)
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(*) for any model M for L and any assignment a in M, [[B]]M,a = 1

a n d

(ii) if P is a proof of A from % , then all lines Ai of P have the 
following property (**):

(**) if M is a model, then for every assignment a in M such that 
[[B]]M,a = 1 for all B & % which occur as a line Ar in P with r  i, 
then [[Ai]]M,a = 1.

The proof of (i) is straightforward for all axioms other than A4 and A5.
An exact proof of (*) for formulas of the form of A4 requires Lemma 1
the proof for formulas of of the form of A5 requires Lemma 2.

Exercise:  Show the validity (i.e. condition (*) above) for each of
the Axioms A1 - A13.

   (Hint: Use Lemma 1 in the proof for A4 and Lemma 3 in 
the proofs for A5.)

Proof of (**):  The proof of (**) is by induction on the length of the
proof.  More precisely, fix L, %  and M and suppose that (**) holds for all
proofs from % of length < n.  We then have to show that (**) also holds
for proofs of length n.

Let P be a proof <C1, ..., Cn-1, Cn> be a proof from %  of length n.  Let a
be any assignment in M and assume that for all lines Cj in P which
belong to % , [[Cj]]M,a = 1.

There are four possibilities for Cn:

(i) Cn is an instance of one of the axioms A1 - A13;
(ii) Cn & %;
(iii) Cn comes by Modus Ponens from earlier lines Cj and Ck

(where Ck is the formula Cj Cn);
(iv) C n comes by Universal Generalisation from an earlier 

line Cj; in this case Cn will be of the form ( vi)A, 
whereas Cj is the formula A.

The only interesting case of the proof is (iv), which the one we
consider .
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We must show that [[Cn]]M,a = [[( vi)A]]M,a = 1.  To this end we must
show that [[A]]M,a[u/vi] = 1 for every u & UM .  Let u & UM .  Because of
the constraint on the application of UG we know that for every Ck
preceding Cj in P which is a member of % , vi does not occur free in Ck.
Since by assumption [[Ck]]M,a = 1 for each of these Ck, we conclude by
Lemma 2 that [[Ck]]M,a[u/vi] = 1.  By assumption the induction
hypothesis (**) holds for Cj (since Cj belongs to a proof from %  of
length < n).  So [[Cj]]M,a[u/vi] = [[A]]M,a[u/vi] =1.  Since this holds for
all u & UM, [[( vi)A]]M,a = 1.

1.2.1  Proof of the Completeness Theorem.

Proof of Theorem 2.  Proving completeness is a good deal more
involved than proving soundness.  The proof relies among other things
on showing that for certain consequence relations - i.e. relations of the
form "% A" for certain formulas A and formula sets %  - there exists a
proof of A from % using our axioms and rules.  To build up the needed
stock of such results it is necessary to proceed in the right order.  Here
follows a sequence of useful results about provability which (with the
exception of T2) can be established without too much difficulty so long
as one proceeds the indicated order.  It will be useful to distinguish
between provability simpliciter and provability without use of the rule
UG (Universal genralisation).  Provability in this latter, restricted sense
we indicate by " ' ".  Thus " % '  B" means that there is a proof of B
from % in which UG is not used.

T1. ' A  A
T2. For all formulas A, B and sets of formulas % ,

% ' A B     iff     % U {A} '  B
T3. ' (A  B)  ((B  C)  (A  C))
T4. ' (A  (B  C))  (B (A  C))
T5. If % ' A and ) U {A} ' B , then % U ) ' B
T6. B (A A)  '  B

We abbreviate the formula (A A) as A.  In the following it will also
be useful to have a name for one particular formula of this form, in
which A is some single sentence.  The sentence chosen involves only
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logical vocabulary and thus belongs to every first order language.  So
we let    be short for the following formula:

(Def. ) (( v1)(v1 = v1) ( v1)(v1 = v1)).

T7. '   B
T8.   '  
T9.  '  
T10. '  
T11. '  
T12. B,  B '  
T13. B  ' B
T14. B  ' B
T15. B  ' B
T16. B A,  A  ' B
T17. B  A '  A  B
T18. % ' B   iff    % U { B} '  
T19. B  B '  B
T20 %  {A} '  B and %  { A} '  B iff %  '  B
T21. ' ( vi)( A B)  ( vi) A vi) B)
T22. ' B ( vi) B provided vi does not occur free in B
T23. ' ( vi) B ( vk) B[vk/vi] ,

provided vk does not occur free in B and every occurrence
of vk in B[vk/vi]  which is not an occurrence of vk in B is 
free in B[vk/vi] .

T24. ' [B] t/vi ( vi)B
T25. ' t  =  t'    t'  =  t,  provided t is free for vi in B
T26. ' t  =  t'  &  t'  =  t'')    t  =  t''
T27. ( vi)( A B)  (( vi) A vi) B)
T28.  (( vi) A A, provided vi does not occur free in A.
T29. ( vi) A ( vk) A[vk/vi], provided vk is free for vi in 

        A.
T30. ( vi) t = vi,  provided vi does not occur in t.
T31. For all sentences A, formulas B and sets of sentences % ,

%  A B     iff     %  {A}  B
T32. A   A
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T33. ' A A
T34. If ' A A' and ' B B', then ' (A & B) (A' & B'),

' (A v B) (A' v B'), ' (A  B) (A'  B'),
' (A  B) (A'  B')

The theorems T1-T31 have been arranged so that the earlier ones may
be used in the proofs of later ones.  (Though some other orderings
would work just as well.)  We leave the proofs as exercises in all cases
except for those of T2 and T31.

Proof of T2:

  Suppose that P is a proof of A  B from % .  Append to P the new
lines: (i) A and (ii) B.  The first of these is justified as a member of the
premise set %  {A}, the second as an application of M.P. Thus this
extension will be a proof of B from %  {A}.

.  Suppose P = < C1, ..., Cn> is a proof of B from %  U {A} in which there
are no applications of UG.  Note that for each i < n, the initial segment
< C1, ..., Ci> is a proof (without UG) of Ci from %  U {A}.
We transform P into a proof <D1, ..., Df(n)> of A  B from %  in which
for each line Ci of P there is a corresponding line Df(i) of the form
A  Ci. (f is a monotone increasing function from {1, ..., n} into
{1, ..., f(n)}.)  We do this by (i) constructing a proof P1 of
A  C1 from % , and (ii) extending successively for i = 1, ...., n-1 the
already obtained proof Pi of A  Ci from %  to a proof Pi+1 of
A  Ci+1 from %.

(i)  In this case the proof <C1> consists of the single line C1.  There are
three possibilities regarding C1:

(i) C1 is the formula A;
( i i ) C1 is an axiom;
(iii) C1 is a member of % .

In case (i) we take for P1 a proof of A  A from the empty premise set
(see T1).
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In cases (ii) and (iii) we take for P1 the three lines:

( 1 ) C1 (Axiom or member of % )
( 2 ) C1 (A  C1) (Axiom A1)
( 3 ) A  C1 (MP from lines (1) and (2))

Clearly this is a proof of A  C1 from % .

Now suppose that 1  i < n and that a proof Pi  = <D1, ..., Df(i)> of
A  Ci from %  with the desired properties has already been
constructed.  For the line Ci+1 of < C1, ..., Cn> there are the following
possibilities:

(i) C1 is the formula A;
( i i ) C1 is an axiom;
(iii) C1 is a member of % ;
( iv) there are j, k < i such that Ck = Cj  Ci+1.

In cases (i) - (iii) we cosntruct Pi+1 by appending to Pi the proof P1
which we constucted for these respective cases under (1).  It is clear
that in each of these cases this does give us a proof of the intended
kind.  For the remaining case (iv) we extend with the following lines:

((f(n) + 1) (A (Cj  Ci+1))  ((A Cj) (A  Ci+1))
     (Axiom A2)

((f(n) + 2) ((A Cj) (A  Ci+1)) (MP, from lines f(k),
((f(n) + 1))

((f(n) + 3) (A  Ci+1) (MP, from lines f(j),
((f(n) + 2))

In this manner we obtain eventually a proof of A Cn from % .
This concludes the proof of T2. q.e .d.

T2 is a special case of the more general equivalence:

(*)  %  A B iff % U {A}  B

The proof of this equivalence is considerably more complicated than
the one just given.  Since our immediate need is in connection with the
"propositional calculus" theorems T3-T20, T25, T26, all of which can
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be proved without the use of UG, the more restricted version T2
suffices.  In the central part of the Completeness Proof we will need
another special case of (*), in which A, B and the members of %  are
sentences.  In the above lits this is T31, hte proof of which follows
presently.

In its full generality the equivalence (*) will follow as a corollary to the
Completeness Theorem, given that the semantic equivalent (**) of (*)
holds:

(**) %  A B iff % U {A}  B

That (**) does hold is easily shown.  (Exercise: Prove this!)
A proof of (*) along the lines of the proof of T2 is given in the
Appendix.

Proof of T31.

 As in the proof of T2.

   Again we assume that there is a proof P = < C1, ..., Cn> is a proof of
B from %  U {A} and construct for i = 1,..., n proofs Pi of A Ci from % .
The construction of P1 is as in the proof of T2, and the extension of Pi
to Pi+1 is also as in the earlier proof for the four cases considered
there.  The one additional case that is to be considered now is that
where Ci+1 is the result of an application of UG.  In that case Ci+1 has
the form ( vj)D for some j while there exists a k < i+1 such that Ck i s
D.  We  Pi with the lines

(f(i) + 1) ( vj)(A  D) (UG)
(f(i) + 2) ( vj)(A  D)  (A  ( vj) D)     (A4)
(f(i) + 3) A  ( vijD (MP, from (f(i) +1),

   (f(i) + 2))

Note that the application of UG in line (f(i) + 1) is unproblematic since
all members of %  are sentences.  Moreover, since A is a sentence, and
thus has no free occurrences of vj, (f(i) + 2) is a correct instance of A4.

Would that this were all the equipment we need for the proof of the
Completeness Theorem. But alas, it appears that there is one further
property of our axiomatic deduction system that we must verify in
order to be able to carry through the construction that the



3 3

completenes proof involves. This is the property that our deduction
system enables us to prove the equivalence of alphabetic variants.
Roughly speaking ,two formulas are alphabetic variants of each other if
they differ only in that one can be obtained from the other merely by
"renaming bound variables". It is a well-known and intuitively obvious
fact that if this is the only difference between two formulas, then they
are logically equivalent. The "name" of a bound variable doesn't matter;
or, more correctly put, which variable symbol we use to play the role of
a particular bound varuiable in a formula makes no difference to the
semantics and logic of the formula. For instance, the sentences

( v1)( v2)(P(v1,v2) & P(v2,v1)), 
( v1)( v3)(P(v1,v3) & P(v3,v1))

are alphabetic variants; and so are the free variable formulas

( v1)( v2)(Q(v1,v2,v4) & Q(v2,v1,v4)), 
( v1)( v3)(Q(v1,v3,v4) & Q(v3,v1,v4)).

But we have to be careful about unwanted variable bindings. For
instance, the formulas

( v1)( v2)(Q(v1,v2,v4) & Q(v2,v1,v4)), 
( v1)( v4)Q(v1,v4,v4) & Q(v4,v1,v4) )

are not alphabetic variants, as the occurrences of v4 that are free in the
first formula are bound by the quantifier ( v4) in the second.  This
means that we have to be careful to define the relation of alphabetic
variance in such a way that such cases are excluded. The best way to
accoplish this is by defining the relation inductively on the complexity
of formulas.

Def. 10' (alphabetic variants)

( i ) Suppose A is atomic. Then A' is an alphabetic variant of A iff
A' = A.

( i i ) Suppose that A' is an alphabetic variant of A and B' is an
alphabetic variant of B. Then A' is an alphabetic variant of

A, (A' & B') is an alphabetic variant of  (A & B), and
likewise for the other connectives
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(iii) Suppose that A' is an alphabetic variant of A and that vi,
v j and vk are variables such that:

a. vi is free for vk in A and A has no free occurrences of vi;
b. vj is free for vk in A' and A' has no free occurrences of vj.

Then ( vj)A'[vj/vk] is an alphabtic variant of
( vi)A[vi/vk].

Likewise for ( vi)A[vi/vk] and ( vj)A'[vj/vk].

Remark Note that the only way in which two alphabtic variants can
differ is by having different bound variables subject to the restrictions
imposed in clause (iii). This means in particular that if the alphabetic
variants A and A' have any free variables at all, they have exactly the
same free variable occurrences. (For instance, if A has a free occurence
of the variable vi, then A' has a free occurrence of that same variable
vi, in exactly the same position. )

Lemmma. 3'  Let L be a language.

( i ) The relation of alphabetic variance is an
equivalence relation on the set of formulas of L.

( i i ) Let A be a formula with 0 or more free
occurrences of the variable vi and let vr be a
variable that is "fresh" to A, i.e. which does not
occur anywhere in A (neither bound nor free).
Then ( vi)A and ( vr)A[vr/vi] are alphabetic 
variants; and so are ( vi)A and ( vr)A[vr/vi] .

Exercise: Prove the two parts of this proposition.

Hint: (i) should be proved by induction along the
clauses of Def. 10'. (ii) follows from clause (iii) of
Def. 10', if one uses the fact that A is an alphabetic

variant
of itself.

Lemma 3''. Whenever A and A' are alphabetic variants, then |- A A' .



3 5

Proof: We prove the result by induction along the clauses of
Def, 10'.

(i): We have |- A A by T33.

(ii) Suppose that  |- A A' and |- B B'. Then by the first
two theorems liset under T34 |- A A' and
|- (A & B) (A' & B'). For the other connectives the result
can be proved similarly, while making use of the other
theorems listed under T34

(iii) Suppose that  ( vi)A[vi/vk] and ( vj)A'[vj/vk] are as in
clause (iii) of Def. 10'. By induction assumption |- A A'. 
Because of the restrictions on vi, we have that vk is free for
vi in A[vi/vk] and that vk has no free occurrences in
A[vi/vk].  This entails that A = (A[vi/vk])[vk/vi] and from
that it follows that ( vi)A[vi/vk] A is a legitimate instance
of axiom A5. So we have:

|-  ( vi)A[vi/vk] A .

Since we also have |- A A', it follows that

|-  ( vi)A[vi/vk] A'.

By UG we can infer from this:

|-  ( vk)(( vi)A[vi/vk] A')

We now note that vk  has no free occurrrences in
( vi)A[vi/vk], since all its free occurrrences in A have been 
replaced by free occurrences of vi. If i k, then all free
occurrences of vk are gone from A[vi/vk]; and if i = k, then
the free occurrences of vk are bound by ( vi).  From this it
follows that the following is an instance of A4.

( vk)(( vi)A[vi/vk] A')  (( vi)A[vi/vk] ( vk)A')
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Since the antecdent of this conditional is provable, and the
conditional as a whole is too (since it is an axiom), the 
consequent of hte conditional is provable as well:

|- (( vi)A[vi/vk] ( vk)A' (*)

We now make use of the fact that vj is free for vk in A' and
that vj has no free occurrences in A'. From the first
assumption it follows that ( vk)A' A'[vj/vk] is an instance
of A5. So this formula is provable and by UG we can get
from it a proof of  ( vj)(( vk)A' A'[vj/vk]). Since
( vk)A'  has no free occurrences of vj,

( vj)(( vk)A' A'[vj/vk]) (( vk)A' ( vj)A'[vj/vk])

is an instance of A4, so that we get:

|- ( vk)A' ( vj)A'[vj/vk]).

Combining this with (*), we get:

|- (( vi)A[vi/vk] ( vj)A'[vj/vk] )

The converse of this implication is proved in exactly the
same way.

The equivalence of ( vi)A[vi/vk] and ( vj)A'[vj/vk] can be
obtained from the equivalence between ( vi)A[vi/vk] and
( vj)A'[vj/vk] by making use of axiom A11.

1.2.2  The core of the Completeness Proof.

We now turn to the construction which will yield the proof of Theorem
2 .

The method we will use to prove completeness is that developed by
Leon Henkin (1950).  As Gödel (1929) noticed, to prove completeness
it suffices to show that every consistent set of formulas has a model,
where a consistent  set of formulas is a set )  from which no explicit
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contradiction can be proved:  not-()   ).  We prove this by (i)
extending the given consistent set )  to a maximal consistent set )* a n d
(ii) using )* to construct a model which verifies all members of )* .
In the present proof we confine ourselves to the case where )  and )*
are sets of sentences.

Assume that % is a consistent set of sentences of some language L.  Let
c1, c2, ... be an infinite sequence of new individual constants and let L'
be the language L U {c1, c2, ... }.3  Let A1, A2, ... be an enumeration of
all the sentences of L'.  We define the sets ) i as follows:

( i ) )o     =      %

         )i  {Ai+1}  if )i U {Ai+1} is consis-
tent and Ai+1 is not of 
the form ( vj) B

(i i ) )i+1  = )i  {Ai+1, B[ck/vj]} if )i U {Ai+1} is consis-
tent, Ai+1 is of the 

form ( vj)B and ck is  
the first new constant 
which does not occur 
in )i U {B}

)i  { Ai+1} otherwise

Let  )*   =   Ui&* )i.  The )i and )* have the following properties:

(P1) ) i is consistent.
(P2) )*  is consistent.

3 This is not directly possible, of course, in case L already contains all but a
finite number of the individual constants which our formalism makes available.
However, since the set of all individual constants of our formalism is infinite, it is
always possible to make an "isomorphic copy" L' in which some infinite subset of
this set is not included.  For this language L' we can then proceed as indicated.
Each consistent set of sentences of L translates into a consistent set of sentences of
L' and the model for L' in which all the sentences of this second set are true can be
straightforwardly converted into a model for L in which the sentences of the
original set are true.
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(P3) )*  is complete in L', i.e. for each sentence B of L' either B & )* 

or B & )*.
(P4) If  B, then B & )*.
(P5) If B  C and B & )*, then C & )*.
(P6) ( vj)B & )*  iff B[c/vj] & )* for some individual constant c.
(P7) For each closed term t of L' there is an individual constant c s u c h
that the sentence t = c belongs to )* .

Here follow proofs of the propositions P1 and P3.  The others are left to
the reader:

Exercise:  Prove the propositions P2, P4 - P7!

Proof of P1.  (By induction on n.)

( i ) )o = %   is consistent by assumption.

( i i ) Suppose )n is consistent.  We show that )n+1 is consistent.
( a ) Suppose that )n  {An+1} is consistent.  If An+1 is not of the form
( vj)B, then )n+1 = )n  {An+1} and thus consistent.  So suppose that
A n+1 is of the form ( vj)B.  Suppose that )n+1 =
)n  {( vj)B, B[cr/vj} is inconsistent, where cr is a new constant which
occurs neither in )n nor in ( vj)B.  Thus

)n  {( vj)B, B[cr/vj]}   ( 1 )

So by T2 (the Deduction Theorem),

)n  {( vj)B}  B[cr/vj]   ( 2 )

That is, there is a proof C1 ( 3 )
C2
 .
 .
 .
Cn-1
B[cr/vj]   
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all premises in which are from )n  {( vj)B}.  Now let vk be a variable
that does not occur anywhere in the proof (3). Then it is easy to verify
t h a t

C'1 ( 4 )
C'2
 .
 .
 .
C'n-1
B[vk/vj]   

is also a correct proof (which now derives the free variable formula
B[vk/vj] from the premise set )n  {( vj)B}.  Since the premises are all
sentences, we can apply UG to this last line, obtaining as next line

( vk)(B[vk/vj]  ) ( 5 )

Using T27 and T28 we can extend this proof further to one whose last
line is

( vk)B[vk/vj]  ( 6 )

At this point we make use of our Lemmata about alphabetic variants.
From Lemma 3'.ii it follows that ( vk)B[vk/vj] is an alphabetic variant
of ( vj)B. So by Lemma 3'' ( vj)B and ( vk)B[vk/vj] are provably
equivalent. From this it is easy to see that the proof can be further
extended to noe whose last line is (7).

( vj)B  ( 7 )

We now have a proof of ( vj)B   from )n  {( vj)B}.  So by T31 we
have a proof of  from  )n  {( vj)B}.  So  )n  {( vj)B} is inconsistent,
which contradicts our assumption.

(b)  Now assume that )n  {An+1} is inconsistent.  Then  )n+1 =
)n  { An+1}.  Suppose )n+1 is inconsistent.  Then we have

)n  {An+1}   8 )
a n d
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)n  { An+1}   ( 9 )

From (12) we get, by T31 and T6
)n   An+1 ( 1 0 )

From (10) und (8) we conclude that )n , but this contradicts the
assumption that )n is consistent.  So once more our assumption that
)n+1 is inconsistent has been disproved, and )n+1 is consistent.

This concludes the proof of P1.

Proof of P3.

Suppose that B is a sentence of L' such that neither B & )* nor
B & )* .  Let B be the formula An+1 of our enumeration of the

sentences of L' and B the formula A m+1; and let us suppose, without
loss of generality, that n < m.  Since An+1 does not belong to )* , we
can conclude that

)n  {An+1}  .  ( 1 )

For if not, then An+1 would have been a member of )n+1 and thus of
)* .  By the same reasoning we conclude that )m  {Am+1}  .
Moreover, since by assumption n < m,  and so )n  )m , it follows from
(1) that
)m  {An+1}  .  So we have

)m  {B}  ( 2 )

a n d

)m  { B}  ( 3 )

But then we infer as in the last part of the proof of P1 that )m  is
inconsistent, which contradicts P1.  So our assumption that there is a
sentence B such that such that neither B & )* nor B & )*  has been
disproved.  This concludes the proof of P3.    q.e.d.
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We define the folllowing relation  between constants of L':
c  c'  iffdef the sentence c = c' belongs to )* .

(P8) is an equivalence relation.
(P9) if c  c' and P(t1,.., c,..,tn) & )* , then P(t1,.., c',..,tn) & )* .

Exercise:  Prove P8 and P9!

From )* we define a model M = <U,F> as follows:
( i ) U is the set of all equivalence classes [c]  for individual 

constants c of L'.
( i i ) for each n-place functor g, F(g) is that n-place function 

from U into U such that for any members [c1] , ..., [cn]  
of U, F(g) = [c] , where c is some individual constant 

from L' such that the sentence g(c1,...,cn) = c belongs to 
)*.

(i i i) for each n-place predicate P, F(P) is that n-place 
function from U into {0,1} such that for any members 
[c1] , ..., [cn]  of U, F(P) = 1 iff the sentence P(c1,...,cn) 
belongs to )* .

N.B Note that clause (ii) entails that if g is a 0-place functor (i.e. an
individual constant), then F(g) = [g] , since g = g will belong to )* .

We now prove by induction on the complexity of sentences B of L':

M  B   iff   B & )*. (*)

Proof of (*)

Before we can turn to the proof of (*) itself we first need to say
something about terms.  We start by recalling that for each closed term
t (i.e. each term t not containing any variables) the sentence ( v1) t =
v1 is a logical theorem.  (See T30.)

( v1) t = v1 ( 1 )

So  ( v1) t = v1  &  )* .  This means also that if ( v1) t = v1 is the
sentence An+1 in our enumeration, then )n U {An+1} is consistent and



4 2

thus  )n+1 =  )n U {( v1) t = v1,  t = cr}, for some new constant cr.  So
there is at least one constant c such that the sentence t = c  belongs to
)* .

We now show that what we have made true by definition for "simple"
terms of the form g(c'1 , ... , c'n ) holds for closed terms in general:

Let a be any assignment in M.  Then we have for any ( 2 )
individual constant c of L' and any closed term t:

[[t]]M,a  =  [c]   iff   t = c & )*

The proof of (2) is by induction on the complexity of t.  If t is an
individual constant, then the result follows from clause (ii) of the
definition of M.  (See remark follwoing the def.)

So suppose that t is a complex term of the form g(t1 , ... , tn ) and that
(2) holds for the terms ti. First suppose that [[t]]M,a   =  [c] .  Let c'i (i
= 1, ..., n) be constants such that the sentences ti =  c' i &  )* .  So by
induction hypothesis,

[[ti]]M,a  =  [c'i] ( 3 )

Since [[t]]M,a  =  F(g) (< [[t1]]M,a, ..., [[tn]]M,a>), by the def. of F, we
get from (3):

F(g) (< [c'1] , ..., [c'n] >)  =  [c]   ( 4 )

As we have seen (def. of F!), this is equivalent to

g(c'1, ... , c'n) = c  &  )* ( 5 )

Since also ti =  c' i &  )*  for i = 1,...,n, we infer with the help of A13 that
g((t1, ... , tn) = c  &  ).

Now suppose that  t = c  &  )* .  Again choose c'i (i = 1, ..., n) such that ti
=  c' i &  )* .  Once more we have (3) because of the Induction
Hypothesis.  Also, by A13. etc. we may infer that (5).  So, by the def. of
F we get (4). (3) and (4) allow us to infer that

F(g) (< [[t1]]M,a, ..., [[tn]]M,a>)  = [c] ( 6 )
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So by the definition of [[ . ]]M,a, [[t]]M,a  =  [c]

We now start with the proof of (*) itself.  We begin with the case where

(i) B is an atomic sentence P(t1 , ... , tn) , in which the ti are closed
terms of L'.  In this case we have, for any assignment a, [[B]]M,a  = 1 iff
<[[t1]]M,a, ... , [[tn]]M,a > & F(P).  But for each ti we have that [[ti]]M , a
= [c'i]  and by definition F(P) consists precisely of those tuples
<[c'1] , ... , [c'n]  > such that
P(c'1, ... , c'n)  & )* .  Thus we conclude that [[P(c'1, ... , c'n)]]M,a   =  1
iff   P(c'1, ... , c'n) & )* .

( i i ) B is of the form t = t'.  Let c and c' be constants such that t = c
and t' = c' & )* .  First suppose that t = t' & )* .  Then, given the
assumption just made, also c = c' & )* .  Sob by Def. of M, [c]  = [c'] .
From the first part of the proof it follows that [[t]]M,a  = [c]  and
[[t']]M,a = [c'] .  So  [[t = t']]M,a = 1.  If conversely [[t = t']]M,a = 1,
then reasoning as above, we infer that [c]  = [c'] , and hence that c =
c' & )* .  Since also t = c and t' = c' & )* , it follows with A13 that
t = t' & )* .

(iii) B is of the form A.  Then [[B]]M,a  = 1 iff [[A]]M,a  = 0 iff (by
induction hypothesis) not (A & )*) iff (by P2 and P3)  A & )* .

The cases where B is of one of the forms A & C, A v C, A  C or
A  C are handled similarly to (iii).

(iv) B is of the form ( vj)A.  This case requires a special case of Lemma
3, which we will state here as Lemma 3'.  We also add, somewhat
superfluously, a separate proof of this case.

Lemma 3'.   (i)    Let t be any term of L, c an individual constant of 
L, M any model for L and a an assignment in M.  Then:

[[ t[c/vi] ]] M,a   =   [[t]] M,a[F(c)/vi] ( 7 )

  ( i i ) Similarly, if B is a formula of L, M, c and a as under
(i), then
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[[ B[c/vi] ]] M,a   =   [[ B ]] M,a[F(c)/vi] ( 8 )

Proof. (i) is proved by induction on the complexity of t, (ii) by
induction on the complexity of B.  We consider a few of the steps of
these two proofs.

( i ) ( a ) if t is a constant or a variable distinct from vi, then 
t[c/vi] is the same as t, and t is assigned the same value 
by a and by a[F(c)/vi].  So [[ t[c/vi] ]] M,a   =  [[ t ]] M,a   =   

[[t]] M,a[F(c)/vi] .

(b) Suppose that t is the term g(t1 , ... , tn ) and that (7) holds 
for t1 , ... , tn .  Then

[[ t[c/vi] ]] M,a   =     [[ g(t1[c/vi], ... , tn[c/vi])]] M,a =

F(g)(< [[ t1[c/vi]]] M,a, ... , [[ tn[c/vi]]] M,a >)      =

F(g)(<[[ t1]] M,a[F(c)/vi],.., [[ tn]] M,a[F(c)/vi] >)   =
[[t]] M,a[F(c)/vi]

( i i ) ( a ) B is the atomic formula P((t1 , ... , tn).  This case is just 
like (i.a) above.

( b ) B is of the form A while (9) is assumed for A.  Then
[[B[c/vi]]] M,a   = [[ (A [c/vi]) ]] M,a = 1 iff
[[A [c/vi] ]] M,a   =  0  iff (ind. hyp.)  [[A]] M,a[F(c)/vi]   

=  0   iff   [[ B ]] M,a[F(c)/vi]   =  1.
( c ) B is of the form  ( vj)A, with j /= i, while (9) is assumed 

for A.  Then [[ B[c/vi] ]] M,a  = 1 iff for some u & UM
[[A[c/vi] ]] M,a[u/vj] =  1  iff (ind. hyp.) for some
u & UM  [[ A ]] M,a[u/vj] [F(c)/vi] = 1 iff
[[ ( vj)A]] M,a[F(c)/vi] = 1.

We now proceed with case (iv) of the proof of (*), in which B is of the
form ( vj)A).  The case where B is of the form ( vj)A is proved
analogously.  First suppose that B & )* .  Then, by the construction of )* ,
A[cr/vi] & )* for some constant cr.  So, by induction hypothesis,
[[A[cr/vi] ]] M,a  = 1.  So, by Lemma 3',
[[A]] M,a[F(cr)/vi]   = 1.  So there is some u in UM  such that
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[[A]] M,a[u/vi]   = 1 and so by the Truth Definition,
[[( vj)A ]] M,a[F(c)/vi]  =  1.

Now suppose that [[B]] M,a[F(c)/vi]  = 1.  Then, by the truth definition,
there is some u in UM  such that [[A]] M,a[u/vi]  = 1.  but if u & UM ,
then there is some constant c such that u = [c] .  But then, because of
the way M has been defined, [c]  =  F(c). So by Lemma 3' we infer that
[[A[c/vi] ]] M,a  = 1.  So by induction hypothesis A[c/vi] & )* .   So, since

A[c/vi]   ( vj)A,  ( vj)A & )*.

       q.e.d.

1.3  Interlude on Set Theory and the Role of Logic in the
Foundations of Mathematics

The completeness theorem has a number of almost immediate but
independently important corollaries. In order to state these, however, it
is necessary to make use of a number of concepts and theorems from
the theory of sets.  Since these go beyond the (very basic) set-theoretic
knowledge which these Notes presuppose, they must be introduced
before the corollaries of the completeness theorem can be presented.4

It would have been preferable to leave these set-theoretical matters
until Ch. 3, where set theory is developed in detail and in the rigorous
way in which it should be in a course on formal logic and
metamathematics.  But waiting that long would have the disadvantage
that the mentioned corollaries and a number of issues related to them
would have to wait until Ch. 3 as well, instead of being discussed here
and now, in immediate juxtaposition to the completeness theorem and
its proof, from which they follow.  That would be unnatural too, so I
have settled for a compromise:  The concepts and theorems we need
for our immediate purposes will be introduced informally in this

4 The only set theory presupposed here is that which can be found in the
lecture notes for the first semester introduction to logic that is offered at the IMS
("Institut für Maschinelle Sprachverarbeitung") of the University of Stuttgart.
(See Hans Kamp's web page, Lecture Notes/Introductory Logic (ps.file).)
The part of these notes that is devoted to set theory merely covers the basic
information that will be known to any mathematician (including those who have
no traffic with formal logic): set-theoretical notions such as that of 'set', 'set
membership', 'set inclusion', 'union', 'intersection', 'subtraction', 'relation' and
'function' as well as the standard devices of set-theoretical notation.
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interlude.  A more formal treatment - of these set-theoretical concepts
and results, together with many others - will then follow in Ch. 3.

Since the general tenor of this interlude is less formal and more
discursive than the rest of the notes, this seems a suitable point to raise
a number of other issues which are important for an understanding of
the role and place of predicate logic within a wider setting of
mathematical and philosophical logic, and, beyond that, within the
general context of the foundations of mathematics, science und human
knowledge.  So before we proceed with the informal presentations of
the set-theoretical notions and results we need at this point, I will begin
with a few observations on these more philosophical aspects of formal
logic and of the predicate calculus as its principal manifestation.

1.3.1  Predicate Logic and the Analyticity of Arithmetic.

The first observation is largely historical, and concerns the origins and
motives of symbolic logic as we know it today.  As noted in the
introductory remarks to this chapter, the father of modern formal logic
is Gottlob Frege (1848-1925).  To Frege we owe the first precise
formulation - in the form of his Begriffsschrift  - of the predicate
calculus.  Frege's principal motive for developing his Begriffsschrift
was a larger project, that of refuting Kant's claim that the truths of
arithmetic are synthetic a priori.  An essential ingredient to this
refutation was a rigorous formulation of a symbolic language
expressive enough to permit a formalisation of arithmetic, together
with an (equally rigorous) formulation of a system of inference
principles  - rules for inferring from any given formulas of this language
those other formulas that are logically entailed by them.

Kant (1724-1804) presented his doctrine that arithmetical truths are
synthetic a prori in his Kritik der Reinen Vernunft.  The theorems (or
"laws") of arithmetic, he observed, present us with two connected
epistemological puzzles:

(i) We can come to know the truth of arithmetical propositions -
such as that 5 plus 7 equals 12, that there are infinitely primes and so
on - without recourse to information about the outside world;

a n d

(ii) The method we have for obtaining such knowledge - that of
"arithmetical proof", as it is normally called - provides us with a
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knowledge that is apparently 'proof' against all possible doubt or
refutat ion.

The explanation which Kant proposed for these two observations was
that the truths of arithmetic are synthetic truths a priori:  They are
truths that can be known with certainty, he surmised, and without any
appeal to information about the outside world, because what they
express are aspects of the nature of consciousness itself:
Consciousness is constituted in such a way that it forces all our
experiences of what goes on in the world outside us (as well as our
experiences of our own inner life, but in this brief expose we will not
speak explicitly of these any more) into a certain mould.  As a
consequence, the actual form in which our experiences are accessible
to us when we are aware of them or reflect on them, is as much a
product of the moulding which consciousness imposes on information
which reaches it from the outside world as of the external facts or
events which are the source of this information.  Kant thought that it
was possible for consciousness to detect the nature of its own
constitution, and, more particularly, the general effects of that
constitution on the form in which its contents are represented.  In this
way consciousness can recognise certain statements as true, because
what they say follows from the contraints that it itself imposes on
representational form.

Kant called such statements, which consciousness can irecognise as
true because they pertain to its own structure, synthetic a priori.  He
saw them as truths a priori because they are true independently of any
contingencies concerning the outside world and hence can be
recognized as true without consultation of the outside world, but solely
on the strength of looking into the nature and "boundary conditions" of
consciousness itself.  He regarded them as synthetic  because they tell
us something of substance, viz. in that they reveal the effects of the
structure of human consciousness on mental representation.  In this
last respect they are different, he held, from purely "logical" or analyt ic
truths, statements which are vacuously true by virtue of the way in
which they arrange the concepts they involve:  In an analytic statement
the arrangement of concepts is such that the statement just could not
be false - the arrangement 'pre-empts' the statement as it were,
preventing it from making any meaningful statement about what its
concepts refer to and thus depriving it from any opportunity to say
something that could be false.  Kant believed, like the vast majority of
philosophers and scientists of his day, that the range of analytic truths
was very limited:  Analytic truths are not only vacuous but they can
also be quite easily recognized as such.  For understanding any
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statement necessarily involves recognizing the concepts it contains and
the way in which they are arranged in it; so in those cases where this
arrangement reduces the statement to vacuity, our understanding
should be able to see that right off.  Thus understanding an analytic
truth would have to be tantamount to seeing that it must be, vacuously,
true. Indeed, the comparatively few examples of analytic truths which
Kant cites seem to confirm this judgement.  They are either sentences
involving predicates which stand in some obvious relation of
subsumption, such as "Bachelors are unmarried.", or they are
straightforward "trivialities" like the Law of Identity: "a = a".)

One aspect of the moulding force which consciousness cannot help
exerting, Kant thought, is the temporal structure which it necessarily
imposes on experience:  We experience events as temporally ordered,
i.e. as arranged in what he saw as an essentially discrete linear
ordering.  He further saw arithmetic, the theory of the natural number
sequence 0, 1, 2, ..., as a reflection of this temporal dimension of the
structure of consciousness.  And that, he claimed, explains our ability
to establish the truths of arithmetic without reference to external
reality.  The basis of arithmetical proof is consciousness' capacity for
self-reflection.5

Contrary to Kant, Frege was persuaded that the truths of arithmetic are
truths of logic - or analytic truths. They are truths of pure logic, he
maintained, because when analyzed correctly, they can be shown to be
about purely logical concepts: about the ("second order ") concept of
being a concept, and, closely related to that, about an unending
sequence of second order concepts nCo, for n = 0, 1, 2, ... where 0Co is
the conept that is true of a concept C iff C has no instantiations, 1Co is
the conept that is true of a concept C iff C has exactly one instantiation,
2Co is the conept that is true of a concept C iff C has exactly two
instantiations, and so on.

It is these second order concepts, Frege held, - those of being a concept
C that has exactly n instances, for n = 0, 1, ... - that should be seen as
the entities that arithmetic is really about, viz. as the 'true natural
numbers'.  And he took these concepts to be purely logical concepts,

5 Kant held similar views about the statements of pure geometry and about
certain propositions about causation (such as that every event has a cause):  These
statements too, he maintained, reflect intrinsic features of consciousness, which
force the relevant kinds of experience into a predetermined mould.  However, in
the present context it is only his views on arithmetic which are at issue, for it was
only in relation to those that Frege meant to challenge him.
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since they can be defined in purely logical terms. (In present day
terminology: each nCo can be defined by a formula of predicate logic
which contains apart from the predicate symbol C only logical
vocabulary; thus as defining formula for 0Co we can choose: "(C falls
under Co iff) ( x) C(x)".  Moreover, Frege realized that when the
natural numbers 0, 1, 2, ... are identified with the concepts Co, C1, C2,
..., then the familiar arithmetical operations, such as addition and
multiplication, can also be defined in purely logical terms.6

Along these lines Frege succeeded in reducing all of standard arithmetic
in an intuitively plausible way to concepts and statements that he had
good reasons to regard as belonging to pure logic.  To show that the
truths  of arithmetic are logical  truths , however, something more is
needed than just this:  One also has to show that the true statements of
arithmetic, when recast in these logical terms, can be shown to be true
for purely logical reasons.  The traditional way to go about this kind of
task, and the one Frege chose, is to show that arithmetical truths can be
derived by a series of infallible logical steps from a set of equally
infallible basic logical laws, or 'logical axioms'.  The infallible truth of
these axioms must be established independently.  It was primarily to
this end that Frege developed the system of logic part of which has
survived as the first order predicate calculus.  It was also in this context
that he committed the fatal error that flawed his reduction of
arithmetic to logic and that to this very day noone has succeeded in
repairing in a way which does full justice to Frege's original intentions.

Notwithstanding this error (about which more below), Frege's
development of predicate logic has removed once and for all the
misconception which Kant shared with his contemporaries, according
to which analyticity is a marginal phenomenon within both language
and thought, and according to which analytic statements are easily
identified for what they are. Even though Frege's reduction of
arithmetic to logic does not go through in the way in which he
intended, he nevertheless pointed the way to a method for translating
arithmetical statements into formulas of pure logic such that the latter
are truths of logic when the former are truths of arithmetic, and where
discovering the logical truth of the latter is in essence just as hard as
discovering the "arithmetical" truth of the former.  We all know how

6 For instance, addition of two numbers n and m can now be defined as the
operation which when applied to the "numbers" nC o  and mC o  forms the second
order concept of being a concept whose extens ion  (= the set of things
instantiating it) can be split into two parts one of which is the extension of a
concept of which nC o  is true while the otherc is the extension of a concept that
nCo  is true of..
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hard that can be, something that even the more elementary books on
number theory will make plain to anyone who might harbour any
doubts on this point.  Moreover, that this is not just a matter of
subjective judgement was shown definitively about half a century after
the publication of Frege's Begriffsschrift  through the work of Kurt
Gödel (1906-1978) and Alonzo Church (1903-1997).  Following up on
Gödel's Undecidability Theorem, Church proved the undecidability of
predicate logic, which states in essence that there can be no algorithm
(or "abstract machine") which decides for arbitrary formulas of
predicate logic whether or not they are logical truths. If an argument
was needed that mathematics can be genuinely difficult, this surely will
be it:  No formal task which is even beyond the most sophisticated
calculating devices could be an easy task for any of us.

That arithmetic cannot be reduced to logic in the way Frege wanted was
the great tragedy of his intellectual career.  The flaw in his reduction
was discovered by Bertrand Russell (1873-1970) at the very time when
Frege's Grundgesetze der Arithmetik, the magnum opus in which his
reduction of arithmetic to logic was carried out in full detail and which
contained the fruits of more than two decades of assiduous work - was
completed and had already gone to press.7  Like the Fregean
programme to which it dealt such a devastating blow at the time,
Russell's discovery has been of enormous importance to subsequent
developments in the foundations of logic and mathematics.  It is known
as Russell's Paradox.

To understand the gist of Russell's Paradox it is necessary to say a little
more about Frege's attempt to reduce arithmetic to logic.  Frege made
an essential use of the systematic conceptual relation that exists
between concepts and sets (or 'classes', the distinction between sets
and classes, which will be explained in Ch. 3, doesn't matter at this
point):  Every concept determines a certain set (or class, but we won't
mention classes any further in the following considerations), its so-
called extension , consisting of those and only those things which fall
under  the concept (or to which, as one also says, the concept applies) .

7 Frege attempted to correct the mistake that Russell had discovered in the
galley proofs of the Grundgese t ze , which reached him at more or less the same
time as Russell's letter.  Unfortunately, the correction didn't improve matters:  The
resulting system was still inconsistent, while some of the derivations presented in
the book did no longer go through as given.  Nevertheless, the basic ideas of
Frege's reduction of arithmetic to logic have proved enormously influential and
have become a central ingredient of the philosophy of mathematics since the
beginnings of the 20-th century.  Russell himself developed an alternative
implementation of Frege's programme in his monumental Principia Mathematica ,
written jointly with A. N. Whitehead (1861-1947).
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Conversely, with each set there is associated the concept of being an
element of this set (and of course, the extension of that concept is the
very set from which one started).  Frege's reduction of arithmetic to
logic makes crucial use of what at face value appears as the obvious
and uncontroversial formal version of the first of these principles.  This
is his so-called Comprehension Principle.  The Comprehension Principle
says that for any formula A with free variable x (A is here to be thought
of as characterising the concept of being a thing such that A is true
when that thing is assigned as value to x) there exists the set consisting
of just those objects of which A is true.  Since sets are assumed to be
entirely determined by what elements they contain, this set is unique:
Each concept can have only one extension  (This is the so called
Extensionality Principle, another fundamental principle connected with
the concept 'set (and likewise with the concept 'class'.)

Exactly what the Comprehension Principle amounts to will depend on
the properties of the system over all, for it is these which determine
what free variable formulas the system contains.  As it turned out, the
expressive power of Frege's system was such as to allow instances of
the Principle which lead to a contradiction; this is what Russell's
Paradox showed.  In modernised and somewhat simplified terms, the
problem which the Paradox brings to light is the following.  Among the
possible values that the variables in Frege's system can take there are in
particular the sets themselves. (This is a consequence of the fact that
according to Frege any bound variable must range over the totality of
all entities there are.)  Moreover, the system makes it possible to say of
two entities x and y that the former is an element of the latter; let us
assume that this statement takes the form "x &  y", with &  being a 2-place
predicate symbol denoting the relation "is an element of".  As in any
current system of predicate logic, this formula can be negated, and the
two variables x and y can be identified.  The result is the formula " ( x
& x)".  When we apply the Comprehension Principle to this formula, it
returns the existence of a uniquely determined set X, consisting of all
things which do not contain themselves as elements.  The existence of X
now leads directly to a contradiction:  Suppose that X is an element of
X.  Then X does not instantiate the formula " (x &  x)", so it does not
fall under the concept which that formula defines and so doesn't
belong to its extension.  In other words, X is not an element of X.  This
contradicts our assumption.  So the assumption has been refuted and
we may conclude that it is false, i.e. that X is not an element of X.  This,
however, amounts to saying that X does fall under the concept defined
by " (x &  x)".  That is, X does belong to the extension of that concept;



5 2

so X is an element of X after all.8  So we have arrived at hte conclusion
that X is not an element of itself and also that it is.

In other words, we have derived a logical contradiction simpliciter.  In
order to remove this contradiction Frege made the last minute
correction in the proofs of Grundgesetze  already referred to in fn. 7.
The correction meant to restrict the applications of the Comprehension
Principle to non-paradoxical cases.  As noted in fn. 7, this attempt was
not successful.  It was the first of a number of such attempts, generally
undertaken with the aim of saving the substance of Frege's reduction of
arithmetic to logic while eliminating the deficiencies of its original
implementation.  One of the first of these, we also noted in fn. 7, was
the logical system which Russell & Whitehead developed in Principia
Mathematica .   This system does away with Frege's assumption that the
value ranges of variables must consist of all entities at once. In the so-
called Theory of Types of Principia Mathematica this is never the case.
Instead each variable belongs to some particular type, which restricts
its possible values to just the entities that are of that type.  Thus the
Theory of Types presupposes a complex ontology of different logical
types of entities, and these are reflected in the types of the variables of
the formal system.

Today the Type Theory proposed by Russell & Whitehead is hardly used.
But it is still with us in modified and streamlined form, viz. as the so-
called Typed +-Calculus , a system designed originally for the
description of functions that was developed in the thirties by Church
(and used by him among other things to prove the undecidability of
first order predicate logic).  To most linguists and computational
linguists this formalism will be known primarily known through its use
in Montague Grammar and other theories of formal semantics.

A conceptually quite different way of tackling the problem exposed by
Russell's Paradox is the one first explored by Ernst Zermelo (1871-
1953).  The central idea here is that the paradoxical applications of the
Comprehension Principle arise in cases where the extension of the
concept to which it is applied is too large.  The goal of this approach is
accordingly to allow use of the Comprehension Principle only in cases

8 (N. B. The reason for calling this argument a "Paradox" is that it leads from
what appear to be valid principles - the Comprehension Principle together with
the other assumption used here, viz that there is such a concept as that of non-
self-membership, which falls within the scope of the Principle - to a
con t r ad ic t ion . )
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where there is a previously established bound on the extension of the
concept to which it is applied.

The actual form which this approach took eventually is that of a theory
of sets formalised within first order predicate logic.  This theory is
developed as a formal theory of the basic relation of set theory, the
relation of an entity x being an element of a set y.  (The symbol
commonly used for this purpose is the Greek letter & , as we did just
now in our proof of Russell's Paradox)  The most familiar
formalisations of set theory along these lines have been carried out in
the predicate-logical language {&}, in which & is the only non-logical
symbol.  These formalisations are committed to the assumption that
the totality of entities described by the theory consists exclusively of
sets.  (I.e. all entities in the universe of a model for the axioms of such
a formalisation are sets.)  This is an assumption that goes against the
intuitions of many people, professional logicians and mathematicians
no less than people outside these professions.  These sensibilities can
be accommodated by formalising the theory of sets in a form which
also leaves room for entities which are not sets.  To this end one needs
a way of distinguishing sets from non-sets.  Minimally this need can be
met by adopting besides &  one further non-logical constant:  a 1-place
predicate S, which serves to distinguish the sets from those entities
which are not. (Those who want to may extend the vocabulary further
by introducing additional predicates and functors which make it
possible to say more about entities that are not sets.)  For the deeper
logical and foundational issues connected with set theory as a theory of
first order logic it turns out to matter little which of these two options -
the one with or the one without S, etc. - one chooses.  In these Notes
(that is, in Chapter 3) we follow the more common practice within
mathematical logic of formalising set theory as a first order theory
within the language {&}.

Even when the decision has been made to formalise set theory in this
language, a further decision is needed:  What set-theoretical axioms
should one adopt?  The set theory which is most widely used today (and
the one that is presented in Chapter 3) is the so-called Theory of
Zermelo-Fraenkel , so-called after the two mathematicians to whom the
theory is due, Zermelo and the somewhat younger Abraham Fraenkel
(1891 - 1965).9

9 Usually the theory of Zermelo-Fraenkel is referred to simply as "ZF".  At
first glance ZF closely resembles the theory that was proposed by Zermelo in 1908.
The contribution made by Fraenkel consists of just one axiom, which to a casual
observer might look like a minor addition. As a matter of fact Fraenkel's axiom
makes an absolutely crucial difference.  For details we refer to Ch.3.
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All currently accepted formalisations of set theory have a feature that
must worry someone who would like to maintain a sharp distinction
between the truths of pure logic and those which make substantive
claims about non-logical matters (in other words, the distinction
between analytic  truths and contingent  truths, often referred to as the
analytic-synthetic  distinction).  The reason is that the claims which the
axioms of these formalisations make about the nature of sets appear to
detract from the "purely logical" notion of a set as the extension of a
concept.  Rather, sets now appear as one category of mathematical
objects among many others - numbers, straight lines, vectors,
manifolds, and so on and so forth.  In view of this the theory of sets -
and this holds in particular for formalisations such as ZF - takes on a
rather different character than what Frege had in mind:  Not that of a
(formal) theory of pure logic, but rather that of one mathematical
theory among others, dealing with its own province of the
mathematical universe.  True, the specifically set-theoretic part of a
formal theory like ZF rests on a foundation (provided by the axioms
and rules of the first order predicate calculus) which we can still accept
as "purely logical".  But what is made to rest on this fundament seems
to pertain just to the special province.

There is a tension between this view of set theory, and the fact that it is
possible to develop essentially all of mathematics within it (thereby
'reducing' all of mathematics to set theory).  This possibility largely
confirms the intuitions of Frege, Russell, Whitehead and others that set
theory (in combination with an underlying system of logic) has a
universal status, which sets it apart from other branches of
mathematics (such as number theory, geometry or functional analysis).
This tension - between set theory as one mathematical theory among
many and set theory as a general framework for the formalisation of
mathematics - is one of the central unresolved issues in the philosophy
of mathematics.  And it is one which may well prove to be beyond
resolution forever.  We will turn to issues related to this question in Ch.
4 .

1.3.2  Set Theory and the Formalisation of Mathematics

To fully appreciate the implications of this (admittedly informal)
conclusion we must take account of another motivation for the
formalisation of logic.  This motivation was not so much a
philosophical one - like that of Frege, who wanted to correct what he
took to be Kant's misconception of the nature of arithmetic truth - but
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rather one which relates directly to serious problems that had arisen
within mathematics itself.  Roughly at the same time when Frege
developed the Begriffsschrift , a crisis had developed within
mathematics as it was practiced and understood by the professional
mathematical community, and which affected some of the actual work
that mathematicians were doing at the time.  This crisis had its roots in
the spectacular advances that had been made during the two preceding
centuries in various branches of mathematics, and most strikingly in
functional analysis (i.e. the theory of functions on the real an the
complex numbers).  Progress in that domain had led to theorems and
proofs of an increasingly abstract nature - theorems and proofs which
often dealt with whole classes or types of functions, rather than with
particular functions for which explicit definitions could be given with
the means then available.  On the whole the abstract concepts that
these theorems made use of were without a proper foundation.  Missing
in particular was a proper definition of 'function', as well as of the
related concepts of 'set' and 'relation'.  In some instances this
unsatisfactory state of affairs led to paradoxes, in the sense elucidated
above: contradictions obtained through apparently impeccable
derivations from what were thought to be sound assumptions and
unobjectionable definitions.

Within a discipline which until then had been regarded as the paradigm
of intellectual soundness and certainty - and as the only remaining
bulwark against the ever growing scepticism that had made its entry
into western philosophy through the work of Descartes (1596-1650) -
the discovery of these paradoxes came as a real shock; and it was felt
to be of the utmost importance that the sources of these paradoxes be
discovered and eliminated, so that the trustworthiness of mathematical
argument would be restored.  One of the ways in which mathematicians
hoped to achieve this was to develop a logical formalism so rigorous
and transparent that its inference principles could not possibly lead
one astray, and to formalise all of mathematics (or at any rate all the
parts where trouble brewed) within it.  In this way, it was hoped, the
paradoxical arguments would be forced to reveal their hidden
assumptions and could then be banned from the new transparent
formal framework within which mathematics was to be redeployed.

It is important to distinguish between this second motivation for
developing systems of formal logic and the one we described as the
primary motive for Frege.  For one thing, the desire to put mathematics
on a surer footing through formalisation within a system of symbolic
logic is not confined to just arithmetic.  In principle it concerns all
branches of mathematics.  And the branch that seemed to be most
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seriously in need of such an overhaul was that where the paradoxes had
most glaringly appeared, viz. functional analysis.  As noted, the basic
ontological domain of analysis, however, is not that of the natural
numbers, but that of the real numbers (of which the natural numbers
form a proper, but in an important sense inseparable subset).1 0

The two motives that we have discussed for wanting to formalise the
principles of logic are thus quite different; and on the basis of the little
that has been said here one could well have imagined that since they
seem to impose quite different requirements on formalisation, they
might have led to quite different results.  But in fact this is not so.  In
both cases the need is for a system of formal logic that

(i) correctly captures the basic constructs that are indispensable for
the representation of information - including predication, sentence
connectors and quantification - and gives the correct inference
principles for those structures;

a n d

(ii) provides a suitable formalisation, on the basis provided by (i), of
the notions of 'set', 'relation', 'function' and certain others that are
connected with these.

It is these combined requirements which proved decisive and led to
formal systems such as ZF, which on the one hand permit the
formalisation of mathematics and on the other enable us to evaluate
philosophical claims like Frege's thesis about the logical nature of
arithmetical truth in ways not previously available.

It has to be admitted, however, that for either of these problems the
solutions that ZF and like systems make available fall short of what was
initially hoped for.  In either case this has to do with the nature of sets

1 0 We will see in Ch. 2 that the relationship between arithmetic and the theory
of the real numbers is complicated and surprising.  Connected with the mentioned
inseparability of the subset of the natural numbers from the set of all real
numbers is that as collectives the real numbers and the natural numbers behave
very differently; as mathematical totalities they have strikingly different
properties, and the same is true of the theories which describe those properties.
Russell & Whitehead's Principia Mathematica, which we mentioned in fn. 7 in
connection with Frege's project to reduce arithmetic to logic, targeted the logical
formalisation of mathematics in general - a truly monumental endeavour, of
which the formalisation of aritmetic is but one aspect taking up only a
comparatively small part of the work as a whole.
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and with what the set-theoretic axioms one adopts have to say about
them.  We already made the observation that what theories such as ZF
have to say about sets tends to make sets look like mathematical
entities - on a par with numbers, geometrical figures and so on - rather
than entities belonging to the realm of pure logic.  This has the effect
that a development of arithmetic within a theory such as ZF looks much
less like a confirmation of Frege's view of arithmetic as a part of pure
logic than he probably would have found acceptable.  Rather than a
reduction of arithmetic to logic we seem to have a reduction of one
branch of mathematics, number theory, to another, the theory of sets.
Perhaps this can still be seen as a refutation of Kant, but that doesn't
make it a corroberation of what Frege really wanted.

For this very same reason a system like ZF leaves room for doubt when
used as a framework for sanitizing mathematics through formalisation.
We noted that one of the problems in the design of these systems is to
decide which set-theoretical axioms to adopt.  On the one hand these
axioms must be powerful enough to make fomalisation of a given part
of mathematics possible.  For such a formalisation requires (a) that we
find a general schema for translating the statements from that part of
mathematics into formulas of our formalism (e.g. into formulas of the
language {&}), and, furthermore, (b) that the translations of those
statements that are theorems can be shown to be valid by formally
deriving them (using the logical inference rules of the system, such as
for instance MP and EG) from (logical and) set-theoretical axioms.  On
the other hand, however, we want our set-theoretical axioms to be t rue
- that is, true of our pretheoretically given notion of set, to the extent
that such a notion exists.  And that not only because truth is desirable
for its own sake, but also because the truth of a set of axioms
guarantees their consistency.  For it is consistency that we need most if
our formalisation of mathematics is to provide us with the much
wanted certainty that mathematics (in this new formalised guise) is free
from contradiction.

One might well have thought that consistency could be established
without any appeal to truth.  After all, there have been in the history of
mathematics and science many occasions where "axioms" that were
proposed at one time were subsequently shown to be false, but where
nevertheless the axiom system of which they were part was
demonstrably consistent. (Within the natural sciences, whose aim it is
to chart truthful accounts of aspects of the empirical world, and which
make extensive use of quantitative axioms coined in mathematical
language, there are instances galore of this.) In such cases it is often
possible to show consistency to everyone's satisfaction but by way of
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arguments which do not rely on actual truth, something which would of
course be impossible, since by assumption the axioms aren't all true!

Unfortunately, however, a formal proof of the consistency of the
axioms of ZF - or, for that matter, of other formal systems of
comparable power - is not to be had.  This is one of the consequences
of Gödel's famous Incompleteness Theorems, which he proved in
conjunction with his already mentioned Undecidability Theorem.  The
only hope we have for bolstering our confidence in the consistency of a
system like ZF is therefore to convince ourselves that the system is
consistent because all its axioms say things that are true of what they
talk about - i.e. about sets.  But how and where do we get the
knowledge that is extensive and solid enough to ascertain the truth of
these axioms, given that it is knowledge about a realsm that is almost as
elusive to is now as it must have been to those who were confronted,
more than a century ago, with the bewilderingly paradoxical properties
which made ist closer exploration such an urgent necessity?

1.3.3  Formalisation of Formalisations?

One of the central purposes of formalisation, we noted, is to guard
against the dangers that are lurking in the shadows when mathematics
is pursued without proper clarification of its basic concepts and
principles.  Only when these have been suitably clarified - and, in
particular, when an explicit formulation has been given of the rules of
mathematical proof - can we be reasonably confident that
mathematical arguments, when formulated in accordance with those
rules, will not lead to trouble (i.e. won't yield wrong conclusions
starting from correct premises).  This consideration applies not only to
arguments in parts of mathematics like analysis, where the
foundational crisis of the nineteenth century had its origin, but also for
arguments in the realm of metamathematics  - i.e. of that branch of
mathematics which studies the mathematical properties of formal
systems.  In fact, for metamathematical arguments the issue of
reliability is especially important.  For it is on these arguments that our
trust in the method of formalisation - as a method for avoiding error
and inconsistency in mathematics - is partly based.

Does this mean that what we should really strive for is yet a further
formalisation - a formalisation of metamathematics (i.e. of the science
of formal systems) itself?  The complexity of metamathematical
arguments is often such that the need for a further formalisation,
which turns these arguments into formal derivations, can be keenly
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felt.  The question must be asked, however, what could really be gained
by such a "secondary" formalisation. Aren't we, when we engage in
such a further formalisation, setting out on a path that is circular, or
that leads to an infinite regress?

Let us retrace the initial segments of this path: It starts with our need
for greater reliability of mathematical arguments than informal
mathematics can give us; therefore we want to develop methods of
formalisation which will reveal the hidden assumptions and errors of
informal arguments; to this end we want to develop formal systems
within which these methods can be made explicit; however, to convince
ourselves that these formal systems really do serve the purpose for
which they have been developed, we want to prove that they behave in
the ways we want them to.

So far so good.  But is this good enough?  How much trust are we
entitled to place in our proofs - which as we said are often quite
involved - that these systems do live up to our expectations?  Shouldn't
we formalise these  proofs in their turn, in order to make sure that t h e y
are sound?  But then, should we?  For if we do, what better grounds
could we find to trust this second formal system, needed for this
second formalisation, than can be found for the first one?

The answer to this question is anything but straightforward.  On the
one hand we have to take this into consideration:  The subject matter
of metamathematics is different from that of the traditional branches
of mathematics such as number theory, analysis or geometry.
Metamathematics' topics of investigation are formal systems - systems
consisting of symbols, structures built from symbols, such as strings or
trees, and rules for manipulating such structures (i.e. turning some
such structures by purely syntactic transformations into others).  It is
quite conceivable that a formal theory about such symbol systems
could be proved correct or consistent in ways that are not available for
formal theories about more traditional mathematical domains (such as,
for instance, the natural number sequence, the continuum or the
Euclidean plane, etc).  For a consistency proof for such a formal theory
would only have to deal only with finite structures such as strings and
trees of symbols, and their formal manipulations.  Such objects and
operations are, one might be inclined to think, much easier to  control
than mathematical objects in general.

 It was from such a conviction - that formal theories of formal systems
are special in that their correctness (and therewith their consistency)
can be demonstrated conclusively - that in the course of the first three
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decades of the 20-th century David Hilbert (1862-1943) developed an
approach to the problem of certainty in mathematics known as
finitism .  In order to place mathematics on a certifiably sound
foundation one should, he proposed, proceed in three steps:

(i) Formalise the different branches of mathematics using in 
each case some suitable formal system, consisting of a formalism
with a precisely defined syntax and a set of axioms characterising
the branch of mathematics that is being formalised.

(ii) Develop a formal system FS for the formalisation of these formal
systems; FS in its turn will consist of a well-defined syntax
together with formal axioms describing the general properties of
the symbolic systems used in these formalisations

(iii) Demonstrate the consistency of FS.

Hilbert's hope that the correctness of such a theory FS could be
established by simple and unquestionably sound methods was
destroyed by the cluster of results - culminating in the famous
Incompleteness Theorem - that were obtained by Gödel around 1930.
These results entail that for almost any of the established domains of
mathematics a formal system suitable for the formalisation of that area
can be proved consistent only in systems which are more powerful than
the system itself.  This entails that a proof of a formal system which
allows for its own formalisation - and surely the theory FS would have
to be such a system - is not possible using the resources which the
system itself provides.

One consequence of these general results is that since the first order
predicate calculus, with the syntax, axioms and inference rules defined
in Sections 1.1-1.3, is a formal system of the kind in question it cannot
be proved consistent by the means that it provides.  What is needed in
addition are certain non-logical principles.  There are various ways in
which these can be made available.  One of these is to add a certain
compendium of axioms of set theory, like the axioms of ZF which we
will discuss in Ch. 3.  Note however, that in order to prove the
consistency of this system an even more powerful system will be
required and so on - the regress is infinite.

As far as the first order predicate calculus is concerned, this is no
ground for serious worry.  By now, after 125 years during which
predicate logic has been used in uncounted applications and its formal
properties have been investigated in depth, and from many different
angles, the circumstantial evidence for its consistency is such as to
leave little room for suspicions that the system might be inconsistent
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after all.  In particular, the proofs of the Soundness Theorem make, in
view of all the different variations in which they have been given, the
possibility that the deduction systems to which they pertain might YET
be found to be inconsistent appear extremely remote. But the matter is
quite different for a system such as ZF, in which the logical axioms of
predicate logic have been extended with a powerful set of axioms which
concern the notion of set.  The realm of sets, and the properties of that
realm which the axioms of ZF articulate, are so complex that the fact
that no inconsistency has been uncovered in the course of the century
during which the system has now been in use doesn't seem to entitle us
to believe in its consistency with anything near the degree of
confidence that appears justified in the case of the predicate calculus
as such.  Here a formal consistency proof would be very welcome
indeed; but Gödel's results tell us that all such proofs must in a certain
sense be self-defeating, since they require formal systems more
powerful than the ones that they are about, for which the consistency
problem rises once again, and with a vengeance.

This is not to say, however, that the formalisation of metamathematics
is necessarily pointless.  Even if the formal system needed in the
formalisation of the notion of a formal system cannot be proved
consistent in a way that raises no further questions, the formalisation
may still help us to get a firmer grip on the metamathematical concepts
that have been formalised, and this may help to bolster our confidence
that the formal systems targeted in the formalisation - those used in the
formalisation of various branches of mathematics - do indeed have the
desirable properties of consistency and correctness which these proofs
are meant to establish.

1.3.4  Some Concepts and Results of the Theory of Sets.

The remarks of Section 1.3.3 were meant to give a glimpse of the
complex conceptual and formal relationship between logic and
mathematics, and especially of the crucial and at the same time delicate
role that is played within that relationship by the concept of set.

When compared with these sweeping vistas the few set-theoretical
notions and theorems which we need at this point - and which will be
presented in this section - will seem to be but a small matter.  But
actually this is misleading.  As only a thorough discussion of the aims
and methods of metamathematics could reveal more clearly, it is the
very notions and results that will be introduced below which are at the
heart of the conceptual and technical difficulties inherent in the
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concept of 'set' and its precarious position on the borderline between
mathematics and pure logic.

The set-theoretical concepts and facts that will be needed in the next
sections of this Chapter, and which will be reused in several parts of Ch.
2 ar the following:

(i) The notions of finite and infinite sets and the difference between
t h e m .

( i i ) The concept of the cardinality of a set.  Cardinality is a way of
assessing the size of a set.  For finite sets it amounts simply to the
number of elements the set contains.  But for infinite sets the notion of
the "number" of elements of a set has no unambiguous meaning.  Here,
a careful analysis of the notions of "number" and "size" is needed.  The
upshot of tghis analysis is that we must distinguish between (at least)
two different notions of size, 'cardinality' and 'ordinality'.

The latter notion, ordinality, applies only to sets whose elements are
given in a certain order.  In contrast, cardinality does not presuppose
any arrangement of the elements of the set, and therefore is applicable
to any set, irrespective of whether its presentation involves any kind of
order. The notion of cardinality we will present below is a simplified
version, but one which reveals all the most important features of the
notion of cardinality.

Both the distinction between finite and infinite we will define here and
the characterisation of cardinality (which differs somewhat from the
'official' definition which will be given in Ch. 3, are both based on the
concept of a 1-1 function from one set X to another set Y.  We begin
with the notion of cardinality.

A.       Comparative  Cardinality.

In Chapter 3 we will be in a position to develop this notion in such a
way that it will be possible to speak properly of "the cardinality of" any
set X.  That is, we will then be able to assign to each X a set-theoretical
object which can be identified with the cardinality of X.  For the time
being, however, we will have to be content with something less than
that.  What we will introduce now are (i) the relation of two sets X and
Y being of the same cardinality and (ii) that of X being of greater
cardinality than Y.
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The basic idea is that Y has cardinality at least as large as X iff there is a
1-1 function from X into Y.

Def.11 ( i ) Y is of cardinality at least as large as X, X  Y, iff 
  there exists a 1-1 function from X into Y.

       ( i i ) X is of greater cardinality than Y, Y  X, iff Y  X
and not X  Y.

Prop.1 (Obvious properties of the relations  and )

        (i)   is reflexive;  (ii)  is transitive.
        (iii)  is irreflexive;  (iv)  is transitive.

Perhaps the historically most important theorem of set theory says that
for any set X the corresponding power set P (X) is of greater cardinality
than X. (The power set P(X) of a set X is the set {Y: Y  X} consisting of
all subsets of X.)

Thm. 12  (Cantor)    X  P(X)

Proof.  We have to show (i)  X  P(X) and (ii) not P(X)  X. (i) is easy.
The function Si which maps each element x of X onto the singleton set
{x} is a 1-1 function from X into P(X).

The proof of (ii) is more interesting.  (It is one of classical examples of
a proof by reduction ad absurdum.)  Suppose there was a 1-1 function f
from P(X) into X.  Then we can distinguish between those Y  X such
that f(Y) & Y and those Y for which this is not so. Let A be the set of all Y
for which this condition does not hold, and let Z be the set of all
corresponding values f(Y):

(*) A = {Y  X: f(Y)  Y}.
(**) Z = {f(Y): Y & A}.

Then the question whether f(Z) is an element of Z leads to a
contradiction. First suppose that f(Z) &  Z.  Then by the definition of Z,
Z & A.  So by the definition of A, f(Z)  Z. So we have arrived at a
contradiction from the assumption that f(Z) &  Z. So this assumption is
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false and we have f(Z)  Z.  So by the definition of Z, Z  A.  So by the
definition of A, f(Z) &  Z, and now we have reached a contradiction
which only depends on the assumption that there is a 1-1 function from
P (X) into X.  So this assumption has been refuted.

q.e .d.

Given our definition of "Y has cardinality at least as large as that of X"
there appear to be two natural definitions of the notion: "X and Y have
the same cardinality": (i) X  Y & Y  X; and (ii) there exists a 1-1
function from X onto Y (also called a bijection , or 1-1 correspondence,
between X and Y).  Clearly (ii) entails (i):  if f is a bijection between X
and Y, then f is also a 1-1 function from X into Y and f-1 is a 1-1
function from Y into X.  What is not obvious is that the entailment also
holds in the opposite direction.  This is the content of the next
theorem.  First we define:

Def.13 X  Y (X is equipollent with Y) iff there is a bijection 
between X and Y

Thm. 3   (Schröder-Bernstein)

 If X  Y and Y  X, then X  Y.

Proof.  Suppose that X  Y and Y  X.  Then there exists (i) a 1-1
function f from X into Y and (ii) a 1-1 function g from Y into X.  Our
task is to construct on the basis of these two functions a bijection h
between X and Y.

The construction makes use of a lemma due to Tarski, according to
which any monotonic function F from the subsets of a given set Z to
subsets of Z has a fixed point (i.e. an argument of F such that F(x) = x):

Lemma 4. (Tarski).

Let F be a monotone function from P (Z) into P (Z), i.e. a function such
that for all U V  Z, F(U)  F(V). Then there exists a W  Z, such that
F(W) = W.

We will prove Lemma 4 below.  But first we will use it to carry through
the proof of the Schröder-Bernstein Theorem.
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Let U be any subset of X. By f[U] we understand the set {f(u): u & U}.

Consider the set Y\ f[U].  This is a subset of Y, so, using the same
notation, we can form g[Y\ f[U]].  This is a subset of X. So we may
define the function H from P(X) to P(X) as follows:

(*) H(U) = X\g[Y\f[U]].

Claim: H is monotone.  For suppose U V  X.  Then f[U] f[V]; so
Y\ f[V] Y\ f[U]; so g[Y\ f[V]] g[Y\ f[U]]; so X\g[Y\ f[U]] 
X\g[Y\ f[V]]. So, by Tarski's Lemma, H has a fixed point W.
Using W we can define the bijection that we are looking for as follows:

(**) Let x & X.  Then:

( i ) if x & W, h(x) = f(x)
( i i ) if x W, then h(x) =  g-1(x)

That h is indeed a bijection is easily verified.

( h . 1 ) We first show that h is properly defined for all of X. Let x & X.
If  x & W, then h(x) is obviously well-defined (since f is defined for all of
X).  Suppose x W.  Then x & X\W = X\H(W) = X\(X\g[Y\ f[W]]) = g[Y\
f[W]].  So there is a y & Y\f[W] such that x = g(y).  Since g is 1-1, also y =
g-1(x) = h(x) (by (ii) from the definition of h).  So once again h(x) is
defined.

( h . 2 ) We next show that h is onto Y.  Let y be any member of Y.
Then we have that either y & f[W] or y & Y\f[W].  In the first case y = f(x)
for some x & W, and so y = f(x) = h(x).  In the second case, g(y) & X\W,
so h(g(y)) = g-1(g(y)) = y.  So each y & Y is in the Range of h, and h is
onto Y.

( h . 3 ) Finally we show that h is 1-1.  Suppose that x, x' are
arbitrary members of X such that x  x'.  We must show that h(x) 
h(x'). If x, x' &  W, then h(x)  h(x') follows from the fact that f is 1-1.
If x, x' & X\W, then by the proof of (h.1) there are y, y' such that x =
g(y) and x' = g(y').  Since g is 1-1, h(x) = g-1(y) and h(x') = g-1(y'), it
follows that h(x)  h(x').  Lastly suppose x & W, x' & X\W.  Then h(x) &
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f[W] and h(x') & Y\f[W], so again h(x)  h(x').  So h is 1-1.  This
concludes the proof of the Schröder-Bernstein Theorem.

q.e .d.
Proof of Tarski's Lemma:

Let F be a monotone function from P(X) to P(X).  Let
Z = {Y & P(X): Y F(Y)}.  We show that Z is a fixed point of F.

First note that since is a member of the set {Y & P(X): Y F(Y)}, this set
is not empty.  Second, we show that Z  F(Z).  Suppose z & Z.  Then
there is a V in {Y & P(X): Y F(Y)} such that z & V.  Since V &
{Y & P(X): Y F(Y)}, V F(V).  Since F monotone and V Z, F(V) F(Z).
So V F(Z) and consequently z & F(Z).
Third, we argue that F(Z) Z.  Since Z  F(Z), it follows by the
monotonicity of F that F(Z)  F(F(Z)).  So F(Z) belongs to the set {Y &
P(X): Y F(Y)} and so F(Z) is included in the union of that set, i.e. F(Z) 
Z.

q.e .d.

Let us take stock of what we have so far established about the relations
,  and .  The Schröder-Bernstein Theorem tells us that  is

equivalent to the intersection of  and its converse.  Moreover, i s
reflexive and transitive, and Cantor's Theorem tells us that there is no
upper bound to the sizes of sets in the sense of : For any set X, the
cardinality of P (X) is bigger than that of X.  So is a partial ordering
without a largest element.

What we do not know yet is whether  is a linear order.  As a matter of
fact   is a linear order, but this is a fact that at this point we can only
state. We will show that it is a fact in Chapter 3.

Thm 4.  For all sets X and Y, X Y or Y X.

B        Finite and Infinite.

We now turn to the notions "finite" and "infinite" set.  We have a fairly
good intuitive grasp of this distinction:  A finite set is one whose
members can be counted and thereby shown to add up to some finite
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number n, an infinite set is one for which this is not possible - one can
keep on counting elements without ever getting to the end.  However,
exactly how this intuitive idea is to be captured in formal terms is not
altogether straightforward.  In fact, the set-theoretical literature
contains several definitions of the notions, "finite set" and "infinite
set". and not all of these are based on the same conception what the
difference consists in.  Even so, the definitions turn out to be equivalent
given sufficiently strong set-theoretic assumptions.  But the
assumptions that are needed for this are not entirely self-evident.  In
Chapter 3 we will see what these assumptions are.  For now what we will
do is give just one of the possible definitions.  It is one for which the
intuitive support appears to me to be particularly strong.

The definition of a finite set (and, with it, of the complementary notion
of an infinite set) which we will adopt is based on the following
consideration:  If X is a finite set and Y is a proper subset of X then
there can exist no bijection between X and Y.  Intuitively this seems
obvious:  If X is finite, there must be some natural number n such that
X has n members. But then, if Y is a proper subset of X, then Y has at
most n-1 members, so no function which has Y as its Domain can
exhaust the members of X.  For infinite sets this consideration does not
apply.  Take for instance the set N  of natural numbers {0, 1, 2, ...}.  The
function f(n) = n-1, defined on the proper subset {1, 2, ...} of N  has N
for its range.  So here we do have a bijection between N  and a proper
subset of it.

Of course this last consideration doesn't prove that bijections between
a set X and a proper subset of it will exist for all sets X which we have
reason to regard as infinite.  But closer consideration makes this
equation - a set is infinite iff there exists a bijection between it and
some proper subset of it - seem very plausible.  The equation comes to
look compelling in particular when we think of an infinite set as one
which must of necessity include a subset which can be regarded as a
copy of N .  And that idea is very plausible too:  If a set's being infinite is
to mean intuitively that when you start counting its members, you don't
get to the end of it in a finite number of steps, then that would seem to
be tantamount to the set containing a (potential) copy of N ' which gets
"created" in this (unending and thus abortive) act of counting the set.
(To make this assumption formally precise is not quite so easy.  We will
see in Ch. 3 how this can be done.)

Returning to our equation:  As soon as a set X includes as one of its
subsets an "isomorphic copy" N ' of N, the existence of a bijection with
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a proper subset seems warranted:  Let N '' be the subset of N ' which we
get by taking away one element 0' of N ' (which we may think of as the
"copy" of 0 under an isomorphism g between N  and N ').  Let f be the
function which maps N ' 1-1 onto N '' and which maps all other elements
of X onto themselves.  Then f is a bijection between X and its proper
subset X\{0'}.

This much will have to do for now as motivation for the following
definition.

Def. 14     (i) A set X is infinite iff there exists a bijection
between X and a proper subset of X.

     (ii)  X is finite iff x is not infinite.

Nothing that has been said so far entails that any infinite sets exist11.
When systems for the formalisation of mathematics were first
developed, there seems to have been an expectation that their existence
could be proved from some more fundamental logical principles.  But
in the meantime this hope has had to be abandoned. The current
systems of axiomatic set theory acknowledge this necessity in that they
all contain an axiom which asserts the existence of some infinite set
more or less directly.

The form in which this axiom is often stated is that there exists a set X
which (i) contains the empty set as a member, and (ii) contains, for any
set x which is a member of it, also the set x {x} as a member. (This is
one way of saying that X contains all the "natural numbers", with 
playing the role of the number 0, { } (= { }) that of the number 1,
{ } {{ }} (= { ,{ }}) that of the number 2, etc.)

Postulate.  (Axiom of Infinity)

There exists a set X such that:
 (i)  & X;    and

(ii) for any x, if x & X, then x {x} & X.

From the Axiom of Infinity we can easily derive that there is a smallest
set satisfying the conditions (i) and (ii).  For let X be as postulated.  Let

1 1 I am referring here to the introduction to informal set theory which we
gave in the Introductory course ot which the present one is the sequel.  (Notes:
Logik & Mathematische Methoden I & II, University of Stuttgart, 1998/1999.
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Z be the set {Y: Y X &  & Y &  (!x)(x & Y  x {x} & Y}).  Since X & Z, Z

is non-empty. So its intersection Z is well-defined.  We will call this
intersection '* '.  Suppose that V is any set satisfying the conditions (i)
and (ii) of the Axiom of Infinity.  Then V X also satisfies these
conditions and since this set is included in X it belongs to Z.  So
* V X and consequently * V. So *  is included in all sets satisfying
the conditions of the Infinity Axiom and thus is the smallest among
them (in the strong sense of "smaller than" as "properly included").

In Ch. 3 we will adopt a principle that will allow us to show that * i s
indeed as small as any infinite set can be.  More precisely, we will then
be able to show that if X is any infinite set in the sense of Def. 3, then
*   X. For the time being, however, it is enough to observe two things:

(i)  *  is the starting point of an infinite sequence of sets of ever larger
cardinality: * , P(*), P(P(*)), P(P(P(*))), ...

(ii) *  belongs to the category of those infinite sets that are of smallest
infinite cardinality.  Sets of this cardinality - i.e. sets equipollent with *
- are called "denumerable", "denumerably infinite or "countably
infinite".  The distinction between the countable and uncountable
infinite plays an important role in many branches of mathematics and
in particular in mathematical logic.  One instance of its importance in
logic we have already encountered: the models constructed in the
completeness theorem are either finite or countably infinite.
Furthermore, the way in which completeness was proved made use of
the fact that the set of formulas of any first order language L
(containing either a finite or a countably infinite set of non-logical
symbols) is countable and thus can be enumerated as a sequence
indexed by the natural numbers.  In Ch. 2 we will see other instances in
which the fact that certain sets are countable is important.

1.4  Corollaries to the Completeness Proof.
Model Isomorphims and Elementary Equivalence.

After this set-theoretical interlude we return to the point where we left
the Completeness Theorem and its proof.  Corollaries 1 and 2 are some
of their immediate consequences.
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Def. 15 Let L be a first order language. We say that a set % o f
sentences of L is satisfiable iff there is a model M for L such
that for every C & % , M  C.

Corollary 1 consists of two simple restatements of the Correctness and
the Completeness Theorem.

Cor.1 Let L be a first order language.

a. A set % of sentences of L is satisfiable iff it is
consistent .

b . A set % of sentences of L is inconsistent iff it is not
satisfiable.

The next corollary is known as the Compactness Theorem.  The proof,
which makes an essential use of the Correctness and Completeness
Theorems, is left to the reader.

Cor. 2. (Compactness)

Let L be a first order language.  A set % of sentences of L is
satisfiable iff every finite subset of % is satisfiable.

A brief remark about the term 'compactness'.  The (to my knowledge)
earliest use of this term occurred in connection with one of the most
important theorems of Analysis , i.e. of the theory of the field of real
numbers. This is the so-called Theorem of Heine-Borel-Lebesgue, which
says: any closed bounded set of real numbers (i.e. every set that can be
written as a finite union of closed intervals) which is included within
the union of an infinite set Y of open intervals is already included
within the union of a finite subset of this set Y. Here the term
"compact" makes good intuitive sense: closed bounded sets of reals are
"compact" in the sense that their points are so much "heaped together"
that they cannot be spread out over an infinity of different open sets
(and so in particular not over an infinity of different open intervals.

In the meantime compactness has become a central notion in Topology ;
and in fact it has had an almost unparalleled number of applications in
all sorts of branches of mathematics.

The HBL Theorem can be seen as stating that a certain property P - that
of being a set whose union covers a given closed bouned set Y is
"finite": iff some infinite set U has P, then so does some finite subset V
of U has P. This is the general form of compactness.  In many instances
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the property  P is such that if any set V has it, then every superset of v
has it too. When such a property P is finite, then the implication holds
both ways:

U has P iff some finite subset V of U has P.

This is so for the HBL Theorem in its original form: if the union of a
finite subset of U already covers a given closed bounded subset, then
surely the union of all sets in U will do too. But the substance of the
compactness claim is the implication also holds in the opposite
direct ion.

In the application of compactness that is given by the Compactness
Theorem for first order predicate logic, which is stated here as Cor. 2,
the infinite set U is a set % of sentences of some language L of first
order pedicate logic and P is the property of being not satisfiable.  The
Compactness Theorem says this property is finite: A set % has P iff some
finite subset of  % has P.  Taking the negations of both sides of this
biconditioal gives us the Compactness as stated.

Cor. 2 follows from the statement  of the Correctness and Completeness
Theorems.  This is different for the Downward Skolem-Löwenheim
Theorem , given here as Cor. 3. The Downward Skolem-Löwenheim
Theorem follows not simply from the statement of the Correctness &
Completeness Theorem, but from the way in which we have proved
completeness .

Cor. 3.  (Downward Skolem-Löwenheim Theorem)

If a set % of sentences of some first order language L has any 
model at all, then it has a model whose universe is at most 
denumerably infinite.

The Downward Skolem-Löwenheim, Cor. 3.a, follows from the proof of
the Completeness Theorem.  This is because for any consistent set of
sentences %  the model of % which is constructed in the completenesss
proof is at most denumerable.  For the proof given above this is so
because the language L' for which a maximal consistent set is
constructed, which then gives us the model M = <U,F> of %, is of the
form L  {c1, ..,cn,..}, where c1, ..,cn,.. is a countable sequence of
individual constants not occurring in L, while U consists of equivalence
classes of constants each of which will contain at least one member



7 2

from the sequence c1, ..,cn ,.. .  It follows that U will be at most
countable.1 2

A companion theorem to the Donward Skolem-Löwenheim Theorem is
the Upward Skolem-Löwenheim Theorem:

Let  , be any inifinite cardinal. If a set % of sentences of some first
order language L has a denumerably infinite model, then it has a
model whose universe is of cardinality , .

The Upward Skolem-Löwenheim Theorem doesn't follow from the proof
of the Completeness Theorem as we have given it.  What we need in
addition is (i) a proper definiition of cardinals (especially infinite
cardinals) and (ii) a generalisation of the Completeness proof for
languages with arbitrarily large infinite sets of individual constants
(more precisely:, with sets of individual constants of any given infinite
cardinality ,).  (We can, for the sake of stating  the Upwards Skolem-
Löwenheim Theorem, identify cardinalities with equivalence classes of
sets under the equipollence relation   given in Def. 13 in Section
1.3.4. But to prove  the Theorem we need a somewhat different notion
of cardinal. See XCh. 3 for details, as well as certain set-theoretical
methods that are connectec with that definition.

We will return  to the Upward Skolem- Löwenheim Theorem there.

Exercise. Prove the following statement:  Suppose that L is a first
order language and that %  is a set of sentences of L which has an infinite
model.  Then  %  has a denumerably infinite model.

(Hint: For each natural number n there is a sentence Dn of First Order
Predicate Logic which says that there are at least n different things.  Let
M be an infintie model of % .  Then all Dn are true in M.  So
%  {Dn}n = 1,2,.. is consistent.)

1 2 In the Appendix to this Chapter Correctness and Soundness are proved not
for the axiomatic proof method described in 1.1.5, but for the method of proof by
construction of a semantic tableau.  This completeness proof also entails the
Downward Skolem-Löwenheim Theorem as an easy corollary. The point in this
case is that when an argument is valid, then there is a closed semantic tableau for
the argument. Since a closed tableau is always a finite object, involving finitely
man tree nodes and finitely man formulas associated with those nodes, a closed
tableau for the argument <% ,B> will involve only fnitely many premsies from % , So
the argument  <) ,B>, where )   is the set of those finitely many premises will also be
val id .
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The Downward Skolem-Löwenheim Theorem shows, in quite general
terms, that first order languages are unable to "fully describe" certain
structures which we should like to be able to characterise in terms of
first order logic.  Take e.g. the structure R  of the real numbers, with
the operations of addition, multiplication, the relation of less than and
0 and 1 as distinguished elements.  This structure is non-denumerable.
(There are as many real numbers as there are subsets of the natural
numbers, so the non-denumerability follows from Cantor's Theorem.)
Let %  be any set of sentences from some first order language chosen for
the purpose of describing this structure. (A common choice is the
language whose non-logical constants are the two 2-place functions +
and , the 2-place relation < and the individual constants 0 and 1.)
According to the Skolem-Löwenheim Theorem, if the sentences in %  are
all true in R , % will also be satisfied by certain denumerable models, and
thus by models which differ importantly from R .  To be precise, % will
have models which are not isomorphic  to the intended structure R .
This intuition can be made precise as follows:

Def. 16 Let L be a language and let M =  <U,F> and M' = <U',F'> be 
models for L.

1 . We say that the function h from U into U' is an 
isomorhism from M to  M'   iff

(i) h is onto U' (h is a surjection);
(ii) h is 1-1 (h is an injection);
(iii) if #  is an n-place predicate constant of L, then for all

u1 ,..,un from U, F'(# )(h(u1),..,h(un)) =  1 iff
(F(# ) (u1,..,un) = 1;

( iv) if #  is an n-place function constant of L, then for all
u1 ,..,un from U, F'(# )(h(u1),..,h(un)) =

h(F(# ) (u1 ,..,un) .

2 M and M' are called isomorphic , in symbols M  M', 
iff there exists an isomorphism from M to M'.

Prop. 3    For any first order language L,  is an equivalence 
relation on the class of all models for L.

Evidently no sentences of any language can distinguish between
isomorphic structures; for obviously such structures behave in exactly
the same way with respect to truth.  Indeed, we have the following
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theorem:

Thm. 5. Let M and M' be models for L and let h be an isomorphism 
from M to M'.  Then we have for every formula A of L and 
every assignment a  in M:  [[A]]M,a   = [[A]]M', h.a , where h.a
is the composit ion  of h and a, i.e. that function which
assigns to each variable vi the value h(a (vi)) .

Exercise:  Prove Theorem 5.

Theorem 5 has the following obvious corollary:  If M and M' are
isomorphic models for L and A is a sentence of L, then M  A iff M'  A.
We will state this corollary using the concept of elementary
equivalence:

Def.  17 Let M and M' be models for the language L.  M and M'
are said to be elementarily equivalent, in symbols
M  M', iff for every sentence A of L, M  A iff M'  A.

Prop.  4  Let M and M' be models for L.  If M  M', then M M'.

Cor. 3 makes explicit that there is no hope of using first order
sentences to distinguish between two isomorphic structures.  Arguably
that is no real draw-back, since from a mahtematical point of view two
ismorphic structures are essentially the same - they are the same as far
a their relevant mathematical properties are concerned. One might
hope, however, that it should be possible to use first order logic at least
to describe structures up to isomorphism. But we already have
evidence that that is not the case either. This is one of the implications
of the Skolem-Löwenheim Theorems. Take for instance the Downward
Skolem-Löwenheim Theorem.  It entails that an uncountable structure
can never be fully characterised (i.e. characterised up to isomorphism)
by a set of first order sentences. For any set of sentences that is true in
this structure will also be true in some denumerably infinite model, and
thus in a model that is not isomorphic to the original structure. And the
Downward and Upward Skolem-Löwenheim Theorems taken together
netail that this negative conclusion applies to all infinite structures,
countable and uncountable alike.

For finite models the situation is different.  Whenever M is a finite
model for some language L, then all models which are elementarily
equivalent to M are isomorohic to it. We give a slightly more elaborate
version of this claim in the next theorem.
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Thm 6.  Let M be a finite model for some language L.

  1. If M' is any model for L such that M' M, then
M'  M.

  2. If L is finite, then there is a single sentence AM  of 
L such that for any model M' for L, if M'  AM , 
then M'  M.

Proof.  We first prove 2.  Suppose that L is finite and that M = <U,F>  is
a finite model for L.  Since U is finite, we may assume that U  =
{u1,..,un} for some number n.  Let v1,..,vn be n distinct variables which
we choose to correspond 1-1 to the objects u1 ,..,un . (As a matter of
fact, v1 ,..,vn  are the first n variables from the infinite list in the original
definition of the syntax of predicate logic, which is fine, if not essential
to the following argument.) For each k-place predicate P of L let DP be
the set consisting of all formulas P(vi1,..,vik), such that
F(P)(<ui1,..,uik>) = 1, where uij & {u1,..,un} for j = 1,..,k, and all
formulas P(vi1,..,vik), such that F(P)(<ui1,..,uik)>) = 0.  Similarly,
where g is a k-place function constant of L, let Dg be the set consisting
of all formulas g(vi1,..,vik) = vj, such that F(g)(<ui1,.., uik>) = uj and
all formulas (g(vi1,..,vik) = vj), such that F(g)(<ui1,.., uik>) uj.  Let
B be the conjunction of all the formulas in the sets DP and Dg for
arbitrary P and g in L.  Since M is finite, each of the sets DP and Dg is
finite. Further, since by assumption L is finite, there are only finitely
many such sets DP and Dg. Therefore there are only finitely many
formulas in all the sets DP and Dg together.  So we can form the
conjunction B of all these formulas.  B is a formula of L and can be
turned into a sentence AM  in the way shown in (1).

( 1 ) ( v1) ... ( vn)((- i j vi  vj) & ( vn+1) Vi(vn+1 = vi) & B)

We will refer to the part of AM which follows the initial block of
existential quantifiers ( v1) ... ( vn) as A*M .

Claim: AM  describes M up to isomorphism.  That is,

( 2 ) For any model M' for L we have: M' is a model of AM  iff M'  M.
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The proof of (2) consists of two parts.  First, we have to show that M is
a model of AM .  This is more or less obvious from the way in which AM
has been constructed.  Second, we have to show that if M' A M , then
M'  M.  We observe first that if M' satisfies AM , then there are w1,..,wn
such that M' A*M , i.e.

( 3 ) M' - i j vi  vj & ( vn+1) Vi(vn+1 = vi) & B)[w1,..,wn]13.

It is easily seen that because of the part of the formula in (3) which
precedes B, w1,..,wn are all the elements of UM'. So M' has cardinality
n. Moreover, the function f: {u1,..,un}  {w1,..,wn} defined by
"f(ui) = wi" is an isomorphism from M to M'.  For instance, supose that
P is a k-place predicate of L and <ui1,..,uik> is some k-tuple of elements
from {u1,..,un}.  Then B will contain either the conjunct  P(vi1,..,vik) ,
or the conjunct P(vi1,..,vik), depending on whether F(P)(ui1,..,uik) =
1 or F(P)(ui1,..,uik) = 0.  In the first case we will have, because of (3),
that  M' P(vi1,..,vik) [wi1,..,wik].  This means that FM'(P)(wi1,..,wik) =
1. i.e.

( 4 ) FM'(P)(<f(ui1),..,f(uik)>) = FM'(P)(<wi1,..,wik>) =
F(P) (<ui1,..,uik>).

In the second case M' P(vi1,..,vik) [wi1,..,wik]. So FM'(P)(wi1,..,wik)
= 0 and again we have (4) and thus satisfaction of the requirement.
Since this holds for arbitrary argument sequences ui1 ,..,uik , the
isomorphism requirement for P is satisfied. The case of other
predicates of L and also that of any function constant of L are handled
in the same way. This concludes the proof of Part 2.  of the Theorem.

To prove Part 1 of thee Theorem we only need to consider the case
where L is infinite, as the case where L is finite has already been dealt
with.  If L is infinite, we may assume that L is the union of an infinite
chain of ever more inclusive finite languages Lj : L = {Lj: j = 1, 2, ..},

where Lj  Lj+1 and all Lj are finite.  Let M = <U,F> be a finite model for
L with universe U = {u1,..,un}.  For each language Lj let Mj be the
reduction of M to Lj, i.e. that model Mj which we obtain when we

1 3 For the notation with the objects from the model M' in squarwe brackets see
the remark following Corollary 1 to Lemma 2 on p. 21.
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"throw away" the specifications FM (# ) of the extensions in M for all
those non-logical constants # of L which do not belong to Lj.14 So Mj =
<U,Fj>, where Fj is the restriction of F to Lj. For each j we can find a
sentence AM j of the form (1) such that for any model M'j for Lj, M'j 
AMj iff M'j Mj.

Let M' be any model such that M'  M.  Then M' AM j for all j.  As in
the proof of Part 2, this entails (for any j whatever) that UM'  consists of
n elements w1,..., wn.  Furthermore we can construct for each j, just as
in the proof of 1., an isomorphism hj between Mj and M'j.

Now we observe the following: Since UM j (= {u1,...,un}) and UM'j
(={w1,...,wn}) are both finite, there are only finitely many different
bijections from the universe of Mj to the unvierse of M'j (i.e. only
finitely many bijections from {u1,...,un} to {w1,...,wn}).  So one of these
must occur infinitely often among the infinite sequence of bijections
h1, h2, , .. . Let h be such a bijection.  We show that h is an
isomorphism between M' and M.  Consider any non-logical constant #
of L.  Suppose (without loss of generality) that #  is a 2-place predicate
P.  There exists a number jP such that P belongs to Lj for j jP.  Since h =
hj for infinitely many j, there is a j1 jP  such that h = hj1.  Therefore f
maps the extension PM  of P in M onto the extension PM' of P in M'.  For
suppose that <ur,us> & PM .  Then P(vr,vs) is a conjunct of AM j1.  So by
the form of AM j1 specified in (1), <wr,ws> & PM'.  Similarly, if it is not

the case that <ur,us> &  PM , then P(vr,vs) occurs as a conjunct of
A M j1. So by the same reasoning it is not the case that <wr,ws> & PM'.

q.e .d.

1.5   First Order Theories and Modeltheoretic Relations.

We conclude this chapter with:

(i) a discussion of the notion of a (formal ) theory  (of  some first
order language L), and

1 4 For an explicit formal definition of model reduciton see Def. 21 below.
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(ii) the definition of two fundamental relations between models:

( a ) the relation of one model for a language L being a submodel
of some other model for L, and

(b) the reduction relation between models - that relation which
holds between a model M for a language L and a model M'
for some more inclusive language L' iff M is the reduction of
M'.

The first of these relations will then be applied in what will be the last
significant theorem of this Chapter. This theorem is a so-called
preservation theorem. In general, preservation theorems say that a
logical formula has a certain model-theoretic property P iff it is
logically equivalent to a formula with a certain syntactic form. The
model-theoretic property is typically of the form: if the given formula A
is true in a model M then it is also true in any model M' that stands in a
certain relation R to M; in other words, P says that the truth of A is
preserved going from models M to models M' standing in the relation R
to M, In the theorem we will consider here, R will be the submodel
relat ion.

We have already made a few very simple uses of the reduction relation
between models, viz. in those cases where we extended a language L to
a language L' with additional individual constants and then "expanded"
models M for L to models M' for L' by adding inerpretations for those
new constants. In each such case M is the reduction of M' to the
language L.  More interesting applications of the reduction relation will
not be given in this Chapter. But we will encounter the relation again in
the next section, in the logical theory of definitions that we will discuss
in 2.5. and where it will play a central role.

1.5.1   Deductive Closure and First Order Theories.

The notion of a first order theory which we will define shortly is
motivated by the use of logic in the formalisation of scientific
knowledge.  The formalisation of science - not only of pure
mathematics but also of the empirical sciences, especially sciences like
physics, chemistry, astronomy, etc. in which mathematics plays an
important role - became one of the central goals of the philosophy of
science in the first half of the twentieth century.  This, it was thought
by many, would be the one and only way to make scientific knowledge
truly precise and thus to make unequivocally clear what empirical
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predictions would follow from any given set of scientific hypotheses.
The thesis that this is the proper way to develop scientific theories is
known as the Deductive-Nomological Model (or, abbreviated, the 'DN
Model') of theory formation and scientific discovery, and the method
of theory development that is implied by this model as the D(decutive)-
N(omological) Method. The general formulation of the DN Model of
scientific theory formation is due to Carl Hempel (1905-1997) and Paul
Oppenheim (1885-1977).

We will have more to say about the history and the implications of the
DN-Method in the last section of this chapter (Section 1.5.3). Here we
will confine ourselves to just one observation, which has been of
central importance in the history of scientfic methodology and the role
that logic plays in it.

The assumption of the DN model that every scientific theory can be
formulated as an axiomatic theory of predicate logic implies that the
relation of entailment - the relation that holds between B and A when B
follows from A - is the same for all scientific domains: There is just one,
universally applicable entailment relation and that is the relation of
logical consequence as we have defined it in these notes - B is a logical
consequence of %  if truth is preserved from % to B in all possible
models.  The Completeness Theorem for first order logic, noreover,
adds to this the computability of this universal entailment relation. It
tells us that there exist formal deduction methods which are correct
and complete for the consequence relation of for first order logic.  Any
such deduction method can be used to derive the theorems of any
theory formalised as an axiomatic fiirst order theory.

According to the DN Model, then, both the question: "What the
entailment relations ifor different scientific domains?" and the
question: "How can the entailments defined by those relations be
actually computed?" are solved in one fell swoop: There is just one such
relation ans any complete proof procedure for that relation can be
used to compute its instances.1 5

At the time when the DN Method was first applied to particular
scientific theories, and then, not long after, formulated as a general
canon of scientific methodology, the logical uniformity it implied - that

1 5 In the course of the history of formal logic since Frege and Peirce a
considerable variety of such correct and complete proof methods for first order
logic have been developed. Some of these look quite different from each other at
least on the surface, even though they produce tghe same output.  Theory
engineers can take their pick.
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all sciences can be seen as making use of one and the same logic - came
as a revelation (or as a shock, depending on methodological or
philosohical persuasions).  Until then it had been widely believed that
many different sciences are governed by their own, domain-specific
logics, and that it was one of the important tasks of any branch of
science to discover the special properties of the logic determined by its
domain .

The most salient example of a science with which people associated
such a belief was plane geometry. For plane geometry an axiomatic
formulation had been in existence since Euclid (300 B.C.). Until the
very end of the 19th century it was thought that geometry was
distinguished by a special form of "geometrical reasoning", which
manifests itself in the use of diagrams (of "arbitrary triangles" and so
forth) and in the drawing of auxiliary lines as part of the demonstration
that iseems to be making an essential use of the diagram.16 This feature
of geometry was seen as distinct from the content of Euclid's postulates
as such. It took well over two thousand years before this belief in the
special nature of geometrical reasoning was shown to be without a
proper foundation. The demonstration was given by Hilbert in his
monograph Grundlagen der Geometrie (1900)17 In order to
demonstrate this Hilbert had to do what noone had done before him
throughout the long history of Euclidean Geometry: He formalised
plane geometry explicitly as a theory of formal logic. Throughout the
centuries Euclidean Geometry had been looked upon as the paradigm of
an axiomatic theory. But this view only focussed on the role and
meaning of Euclid's postulates. The perception of what constitutes a
geometrical proof was based on intuitions about valid mathematical
reasoning in general and valid geometrical reasoning in particular and
was at best marginally connected to an understanding of reasoning in
pure logic. Hilbert's formalisation (which  with hindsight we can see as
one of the first applications of the DN Method) - substituted for this
intuitive conception of ehat constitutes valid geometrical reasoning a
notion of entailment that was based on a precise logical analysis. It was
this that enabled him to show that in last analysis there is nothing that
sets geometrical reasoning apart from reasoning about any other
domain .

1 6 Well-known examples are the standard proofs of the theorem that the three
perpendiculars of a triangle meet each other in a single point, the  theorem that
the three bisectors meet in one point and the theorem that the three medians meet
in one point.
1 7 David Hilbert (1862-1943), one of the most important and influential
mathematicians of all times.
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Geometry is only one scientific theory among many. The reason why
Hilbert's demonstration that its logic is like that of any other domain
made so much of an impact was that throughout the centuries a good
deal of thought had been given to the nature of geometrical reasoning;
it was in particular the views of those who had argued explicitly and
extensively in favour of a mode of proof particular to geometry that
Hilbert was sperceived as having refuted.18 For other scientific domains
the thought that they were or might be governed by their own special
logics tended to be less specific. But as far as is possible to tell in
restrospect, the thought that they too involve special kinds of logic, if
perhaps not wholeheartedly embraced, wasn't firmly refected either.
And for those domains the message of the DN method was as clear and
unequivocal as it was for the domain of geometry: none of these
domains is distinguished by a logic of its own.

Obviously it is the axioms of a theory that is formalised within first
order logic which determine its properties. But even iif that is so, that
doesn't settle the identity conditions of such theories - it doesn't settle
teh question when a theory given as T and another theory given as T'
are to count as one and the same theory. Two points of view are
possible here. According to the first the only thing that really matters
about a formal theory is which statements can be derived in it as
theorems. From this point of view any two axiom sets that generate the
same set of theorems are equivalent and there is no reason to
distinguish between them. On this conception, then, a first order theory
can be identified with the set of its theorems. There may be various
ways of axiomatising the theory, but these should be seen as different
axiomatisations of the same theory.

Sometimes. however, it isn't just the set of theorems that matters, but
also the syntactic form of the chosen set of axioms which generates

1 8 Perhaps te most celebrated of those who argued for the specifically
geometrical character of geometrical demonstrations was the British empiricist
George Berkeley (1685-1753), also known as "Bishop Berkeley".
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that set. Another axiom set might generate exactly the same theorems
but its axioms could nevertheless have different forms, from which less
can be inferred about the logical properties of the theory.19 In such a
situation it would be natural to make the choice of axioms part of the
identity of the theory.

These considerations suggest two "levels of granularity" for the identity
conditions of formal theories: a coarse-grained level at which a theory
is identified with the set of its theorems and a fine-grained level at
which theorems are identified with particular axiom sets. Here we
adopt, following what is the standard practise in mathematical logic,
the coarse-grained level.

This coarse-grained notion of a formal theory - or deductive theory, as
one also says, or simply theory,  the term we will use here - is given
explicitly in Def. 18.b.  It is defined in terms of the notion of deductive
closure , which is given in Def. 18.a.

Def.  18     Let L be a first order language.

   1 . Let  %  be a set of sentences of L.  By the closure of %  in 
L, ClL(%), we understand the set of all L-sentences 
which are logical consequences of % :
ClL(%) = {A: A is a sentence of L & %  A}

  2 . A theory of L, or L-theory , is any set T of sentences of
L that is closed under deduction in L:
T is a theory iff ClL(T) = T.

Where it is clear which language L is intended we sometimes omit the
subscript L in "ClL".  We also use Cl(%) as short for ClL(%)(%), where
L(%), the language of % , is that language which consists of all non-logical
constants that occur in at least one sentence of % .

The operator ClL has a number of fairly obvious but useful properties
which are listed in the following proposition.

1 9 For instance, it could be that the axioms in one set have a form from which
we can infer that the set of theorems they generate is decidable - in the sense that
a computer programme could be written which decides for each statement within
a finite number of steps wether or not it is deducible from the axioms - whereas
some other axiom set generating the very same set of theorems would not enable
us to draw that conclusion because its axioms aren't of the right form.
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Prop.  5  Let L be a first order language, %, ) sets of sentences of L.
Then the following hold:

1 . %  ClL(%).
2 . ClL(ClL(%)) =  ClL(%).
3 . ClL(%) is a theory of L.
4 . If %  ), then ClL(%)   ClL()).
5. Let L' be language such that L  L'.

Then ClL(%) =  ClL'(%) {A: A is a sentence of L}

Here are some further important notions connected with theories:

Def. 19  1 . Suppose that T is a theory of L and that T = ClL(%).  
Then we say that % axiomatises T.  T is called finitely 
axiomatisable iff there is a finite set %  which
axiomatises T.

  2. A theory T is called inconsistent iff T  20; otherwise T
is called consistent .

  3. A theory T of L is called complete  iff for each sentence
A of L either A & T or A & T.  (Often the term
"complete" is used for "complete and consistent".  In
general it will be clear from the context whether this is
in tended. )

  4 . We define L to be the set of sentences of L which
consistsof all sentences of L.  (As stated explicitly in
Prop. 6 below, this set is a theory.)

Proposition 6 collects some simple facts about theories.

Prop. 6 1 . L is a theory of L.
2 . A theory T of L is in consistent iff T = L.
3 . The set {A: A is a sentence of L and A} is a theory of L.

We refer to this theory as TL.
4. When T is a theory of L, then TL T L.

2 0 Recall that is some fixed sentence that is a logical conrtadiction. (Our
hoice was and conrinues to be the formula ( v1) v1  v1. )
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5 . When T and T' are theories of L, then T T' is a theory
of L.

6 . If T and T' are complete theories of L, then either
T = T' or T T'  .

More about first order theories can be found in the exercises to this
Chapter and in Chapter 2.

There is one basic notion conected with axiomatisation that we have
not yet mentioned. Often, when formalising a theory by providing a set
of axioms for it, we try to make sure that the axiom set contains no
redundancies. Firmally: a set of sentences % is called redundant  iff there
is at least one sentence in the set which can be derived from the other
sentences in the set; in such a situation we also call a sentence in % that
can be derived from the other sentences in % redundant in % .

Def. 20      Let %  be a set of sentences from some first order language L.

a . Let A be a member of % . Then A is redundant in %  iff
%\{A} A.

b . % is called redundant  iff it has at least one redundant
m e m b e r .

When the purpose of choosing a set % is simply to provide a set whose
theorems are all and only the sentences in some other set that is given
in advance, then redundant members of % don't do any work that
wouldn't be accomplished without them. In such situations it seems a
matter of "logical hygiene" to replace redundant sets by smaller non-
redundant ones. When the redundant set % is finite to start with one can
always obtain a redundant subset by dropping redundant axioms one by
one until a non-redundant subset of the orginal set remains which still
produces the same set of theorems. (When % is infinite, this is in
general not possible.)

Just as it is often considered a matter of logical hygiene to come up
with axiomatisations that are non-redundant in the sense just defined,
so it is sometimes also seen as a requirement of proper formalisation
that the set of primitive concepts of the axiomatisation - i.e. the set of
those non-logical constants that occur somewhere within the given
axiom set - be "non-redundant". Here "non-redundant" is meanr  in the
sense that none of the concepts in the set of primitives can be defined
within the given theory using the remaining concepts. Exactly what this
anounts to won't be obvious and in fact it is something that requires
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careful explication. To do this here would carry us too far afield.
However the matter in Section 2.5, of Ch. 2, which is devoted to the
theory of definition.

1.5.2   Model Extension, Model Expansion and Preservation

In this section we introduce the model-theoretic relations of submode l
and of reduction.   Both play a part in many important theorems of
Model Theory.  In this section we only give an application of the
submodel relation.

Def. 21      Let M = <U, F> and M' = <U', F´> be models for some
language L. We say that M is a submodel of M' if the
following conditions satisfied:

( i ) U  U'
( i i ) for each n-place predicate P of L and elements a1, ..., an 

of U, F'(P)(<a1, ..., an>) = F(P)(<a1, ..., an> )
(iii) for each n-place functor f of L  and elements a1, ..., an  

of U, F'(f)(<a1, ..., an>) = F(f)(<a1, ..., an> )

When (i)-(iii) are satisfied, we also say that M' is an extension  
of M.

When M = <U,F> is a submodel of the model M' = <U',F'> for L, we
sometimes denote M as "M' U ".

If the language L does not contain any function constants, then there
exists for every model  M' = <U', F'> for L and non-empty subset U of U'
a (unique) submodel M = <U,F> of M', viz. the model obtained by
defining, for each predicate P of L, F(P) as in (ii).  However, when L does
contain function constants, then in general this is not so.  For suppose
that f is an n-place function constant of L. Then the subset U of U' need
not be closed under F'(f), i.e. it may be that there are a1 , ..., an  & U ,
such that F'(f)(<a1, ..., an>) belongs to U' \ U.  In that case a submodel
of M' with universe U cannot be defined.
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The reduction relation is one that holds between models for different
languages, one of which is included in the other.

Def.  22 Let L and L' be first order languages such that L  L'.  
Let M <U,F> be a model for L and M' = <U',F'> a model 
for L'.  Then we say that M is the reduction of M' to L, in 
symbols: M = M' L, iff the following two conditions are 
satisfied:

( i ) U  =  U'
( i i ) For every non-logical constant #  of L, F(#) = F'(#)

When M is the reduction of M' to L, we also say that M' is an
expansion of M to L'

The following proposition is immediate from the definition of the
reduction relation.

Prop. 6  Suppose that M' is a model for the language L' and that M is
the reduction of M' to the sublanguage L of L'.
Then for every sentence A of L, M  A iff M'  A.

Prop. 6 says that a model and its reduction verify exactly the same
sentences that are interpretable in both of them.  No such relation
obtains in general between two models M' and M for some language L
when M is a submodel of M'.  In general, the only sentences whose
truth values are preserved between M and M' in both directions are the
quantifier free sentences of L.  When we restrict attention to
preservation in just one direction, we can do a little better:  The truth
of purely universal sentences (i.e. sentences consisting of a block of
universal quantifiers followed by a quantifier-free part) is preserved
from M' to M, and (ii) the truth of purely existential sentences (those
sentences which consist of a block of universal quantifiers followed by
a quantifier-free part) is preserved from M to M'.  (Note that each of
these statements can be obtained from the other by contraposition.)

Def. 23 Let A be a formula of some language L.

(i)  A is said to be purely universal if A is of the form
( x1) ... ( xn) B, where B is quantifier free and
( x1) ... ( xn) is a string of 0 or more universal 
quantifiers.
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(ii)  A is said to be purely existential iff A is of the 
form ( x1) ... ( xn) B with B quantifier-free.

The following theorem is straightforward and its proof left to the
reader .

Thm 7.  Let M and M' be models for some language L and let M b e
a submodel of M'.  Then for any assignment a  in M

( i ) If A is a quantifier free formula of L, then
[[A]]M,a = [[A]]M',a.

( i i ) If A is a purely universal formula, then if [[A]]M',a  = 1, then
[[A]]M,a = 1.

(iii) If A is a purely existential formula, then if [[A]]M,a = 1, then
[[A]]M',a = 1.

Proof. To prove (1), distinguish between the case where L does not
have any function constants and the case where it does. For
the case where L is without function constants, it suffices to
prove that for arbitrary assignments a   in M, [[A]]M,a  =
[[A]]M',a by induction on the complexity of A. To show (i)
for the more general case where L may have function
constants, we must first show (1) by induction on the
complexity of t that for arbitrary assignments a  in M, noting
that (1) entails that [[t]]M',a  & U M .

[[t]]M,a = [[t]]M',a, ( 1 )

The proof then proceeds as for the case where L has no
function constants.

q.e .d.

Cor. ( i ) Suppose that L, M and M' are as above and that A is a purely
universal sentence of L.  Then, if M'  A, then M  A.

( i i ) Similarly, if L, M and M' are as above and A is a purely
existential sentence of L, then, if M  A, then M'  A.

In a certain sense the results of Theorem 7 are the best we could hope
for:  While universal formulas are preserved by submodels, this is not
generally true for formulas of a more complex quantifier structure -
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Neither -formulas (formulas consisting of a block of universal
quantifiers followed by a block of existential quantifiers followed by a
quantifier-free part), nor -formulas (formulas consisting of a block
of existential quantifiers followed by a block of universal quantifiers
followed by a quantifier-free part) are in general preserved in either
direction.  Both these results follow from the stronger result that not
even purely existential formulas are preserved when we go from a
model to a submodel of it.  One easy way to see this is to consider the
language L whose only non-logical constant is the 1-place predicate P,
the model M' = <{a,b},F'> and its submodel M = <{a},F>, where
F(P)(<a>) = F'(P)(<a>) = 0 and F'(P)(<b>) = 1.  Then the purely
existential sentence ("x)P(x) will be true in M' but not in M.  In the
same way it can be shown that the truth of purely universal sentences is
in general not preserved when we go from a given model to an
extension of it.

The preservation properties that Thm. 7 attributes to purely universal
and purely existential sentences are obviously not restricted just to
formulas of those particular forms.  Any sentence that is logically
equivalent to a sentence of either of these forms will necessarily share
its preservation properties. For instance, if A is a purely universal
sentence and B is logically equivalent to A, then B too is preserved by
going from models to submodels.  For suppose that M is a submodel of
M' and that B is true in M'.  Then A is also true in M', since it is logically
equivalent to B and thus true in the same models. Since A is a purely
universal sentence, A will be true in the submodel M.  So, again because
of the logical equivalence of A and B, B will also be true in M.  The same
reasoning applies to sentences logically equivalent to purely existential
sentences

Interestingly, however, this set - the set of sentences that are logically
equivalent to some puerly universal sentence - exhausts the set of
sentences preserved by submodels.  This is the content of Theorem 8.

Thm 8. Suppose B is a sentence that is preserved by taking
submodels.  Then there is a purely universal sentence A such
that B is logically equivalent to A.

Theorem 8 is one of a number of model-theoretic results to the effect
that if a sentence is preserved by certain model-theoretic relations then
it will be logically equivalent to a formula of some special syntactic
form. Such results are called "preservation theorems". The proofs of
such theorems are as a rule non-trivial and in some cases they can be
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quite complicated.  The proof of Theorem 8 is among the simpler ones.
We present it as an illustration of the genre as a whole.

Proof of Thm. 8.  Suppose B is a sentence of language L for which the
assumption of Thm. 8 holds.  Let G be the set of all purely universal
sentences of L which are logically entailed by B:

G = {A: A is a purely universal sentence of L such that B A}.

We will show

( 1 )  the set G' = G  { B} is inconsistent.

From (1) the conclusion of the theorem follows easily.  For suppose G'
is inconsistent. Then there are finitely many sentences
A 1, ...,An from G such that  (A1 &...& An) B.  It is easily seen that the
conjunction A1 &...& An of the purely universal sentences A1, ...,An is
logically equivalent to a single purely universal sentence A. (First
rename the bound variables of A1,...,An in such a way that they are all
different, i.e. that no two quantifiers in A1 &...& An bind the same
variable.  Then the conjunction can be turned into a prenex formula
that will again be purely universal.).  So A B.  On the other hand all
the Ai belong to G. So we have B Ai   for i = 1, ...,n.  So B A.  So B is
logically equivalent to the purely universal sentence A.

To prove that G' is inconsistent, suppose that G' is consistent.  Then by
Corr. 2 to the completeness theorem it has a finite or denumerably
infinite model M.  Let C be a function which maps each element u of UM
to a distinct individual constant cu not occurring in L.  Let L' be the
expansion of L with all these new constants and let M' be the
corresponding expansion of M.  By D(M'), the diagram of M, we
understand the set of all atomic sentences of L' that are true in M'.
Note that the following holds for any model N for L'.

( 2 ) N is an extension of M' iff N D(M').

We next show that the set D(M')  { B} is consistent.  Suppose not.
Then there are finitely many sentences D1, ...,Dk from D(M') such that

 (D1 &...& Dk) B, or, equivalently,

( 3 )  B (D1 &...&Dk).
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Let D'1, ...,D'k  be obtained from D1, ...,Dk by replacing all those
constants from the range of C which occur in any of the formulas
D 1, ...,Dk by distinct variables y1,...,yr not occurring in D1, ...,Dk or B.
This substitution will preserve the validity of (3). Moreover, since none
of the constants that are involved in the substitution occur in B, the
substitution leaves B invariant. So we can conclude that the formula
B (D'1 &...&D'k) is logically valid.  But then it is easy to see that
B ( y1)..( yr) (D'1 &...&D'k) is also logically valid.  So
B ( y1)..( yr) (D'1 &...&D'k), which means that
( y1)..( yr) (D'1 &...&D'k) is a purely universal sentence of L logically
entailed by B.  Therefore ( y1)..( yr) (D'1 &...&D'k) is a member of G.
So ( y1)..( yr) (D'1 &...&D'k) is true in M.  But then
( y1)..( yr) (D'1 &...&D'k) is also true in M', which is impossible, since
its instantiation  (D1 & ... & Dk) is false in M'. (Recall that M' was a
model of D(M), so that D1,..,Dk are all true in M'.)

So we have shown that D(M')  { B} is consistent.  But this means that
there is a model N of D(M') in which B is true.  But if N is a model of
D(M'), then M is a submodel of N.  So because of the original
assumption about B, M B.  But this contradicts our earlier assumption
that M G', from which it follows that M  B. Thus this earlier
assumption is refuted and with it our assumption of the consistency of
G'. 

     q.e.d.

It is easy to infer from Theorem 8 that a sentence is purely existential
iff it is preserved by model extensions. A more difficult result is the
following:

Thm. 9.  A sentence is logically equivalent to an  sentence iff it is
preserved by unions of chains of models.

An  sentence is a sentence which consists of a block of universal
quantifiers followed by a block of existential quantifiers followed by a
quantifier-free part. (Again either block or both may be empty.) The
notion of a chain of models, to which Thm. 9 also refers, is defined as
follows.  A chain of models for a language L is a sequence of models Mi
for L such that for all n, m, if n < m, then Mn is a submodel of Mm.  By
the union  of such a chain of models Mi we understand that model M
such that UM = {U M i: i = 1, 2,.. } and for any predicate P the extension
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in M of any non-logical constant of L is the union of its extensions in
the models Mi. (It should be checked that this is a proper definition of
a model for L, but the checking is easy.) Lastly we say that a sentence B
is preserved under unions of chains iff for any chain of models M1, M2,
... such that B is true in all Mi, B is true in the union model M.

The proof of Thm. 9 is significantly harder than that of Thm. 8.  The
proof will not be given here.

1.5.2   More on Formalisation of First Order Theories in
Mathematics, Science and the Systematisation of Knowledge.

In the Introduction to Section 1.5.1 we pointed out an important
implication of the claim that any serious scientific theory can, no
matter what its subject matter, be formalised as a theory of first order
logic: the methods of proof and inference in argumentation are the
same everywhere; there is only one concept of valid inference, and that
is the one which is given by the logical consequence relation . To show
that a sentence A and a set of sentences %  stand in this relation, one can
make use of any proof system that has been proved to be correct, and
so long as only first order logic is involved it is possible to use any
systems that hasve been shown to be both correct and complete. In a
derivation on the basis of T that the sentence A follows from the
premise set the axioms of T (and by implication any other sentences
that have already been shown to be theorems) can be used as
additional premises; and in fact, that is the only way in which what
distinguishes T from other theories make its impact on the derivation.
In other words, if T1 and T2 are two axiomatised theories, what follows
in theory T1 can differ from what follows in theory T2 only when the
axioms of T1 are non-equivalent to those of T2.  It is in this way, and
only in this way, that any differences between T1 and T2 can manifest
themselves in their consequences, and thus in their content.

We mentioned in the Introduction to 1.5.1 that this conception of the
the construction, use and significance of scientific theories is known as
the Deductive-Nomological Model of scientific  method.  In this section
we will address a few additional issues that the DN model raises.

The first of these has to do with what has been arguably the paradigm
of the axiomatic method for more than two millennia, viz. Euclidean
Geometry. In his Elements Euclid (ca. 300 B.C.) systematised plane
geometry by reducing the facts about this domain that were known at
his time to five "postulates" - five geometrical statements which were
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taken to be self-evidently true21: all other true statements about plane
geometry should be derivable from these five. (The Elements  show this
to be the case for the already impressive range of geometrical
statements that had been established as true in Euclid's own day.) Since
then, for a total of more than 23 centuries, Euclidean Geometry has
been perceived as something that anyone who wanted to lay claim to a
proper education should have been exposed to. In this way it became
part of the core of high school curricula in most European countries.2 2

At the same time, however - we mentioned this already in the
introduction to Section 1.5 - it was thought that there are aspects to
the method of geometrical proof that are unique to geometry. More
specifically, the use of diagrams of "ideal", "arbitrary" figures (such as
triangles, circles, parallelograms, ellipses, etc.) was held to be
indispensible to such proofs and at the same time essentially geometric
(i.e. irreducible to principles valid outside geometry). As noted in the
introduction to 1.5, this assumption - that the "logic" of geometrical
demonstration was specific to the subject of geometry - was finally
dismissed by Hilbert in 1900. Hilbert was able to show that geometrical
proof was in last analysis no different from proof in other areas of
scientific reasoning. And he was able to show this by doing something
that had never been tried before (notwithstanding the fact that
Euclidean Geometry had been treated since Euclid's day as the paradigm
of the axiomatic method): Hilbert spelled out the axioms with a
hitherto unknown concern for logical explicitness and detail. This
enabled him to bring to light certain aspects of the logic of Euclidean
Geometry which had been concealed from view until then, and to show
in his proofs from these axioms where those aspects play a decisive
part. When one proceeds in this way it becomes clear that the diagrams
which had always seemed an essential ingredient of Euclidean proofs
are nothing but a visual substitute for the application of certain
existence postulates, which license the steps that typically manifest

2 1 Euclid's fifth postulate, the so-called "parallels postulate", is the one irksome
case of a postulate for which self-evidence was considered problematic from the
start. (The postulate was considered dubious already by Euclid himself.). In an
effort to justify the parallels postulate by reducing it to less problematic
assumptions mathematicians kept trying for over 2000 years to derive it from the
other Euclidean postulates, which were generally accpted as self-evident. It wasn't
until the early 19th century when, partly as a spin-off from the indefatigable
attempts to prove the parallels postulate from Euclid's other postulates, both its
consistency with and its independence from the other Euclidean postulates were at
last demonstrated.
2 2 It has been only during the past fifty years or so that geometry has
gradually disappeared from the core curriculum. This is a development of which
the full intellectual implications cannot yet be properly fathomed. They may well
prove more significant than many people currently seem to think.
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themselves in the form of drawing of "auxiliary lines" when proofs are
given in the traditional mode, in which diagrams play their apparently
essential part.2 3

Although Hilbert's formulation stops short of formalising geometry as a
theory in the formal sense that it has been given in formal logic (see
Def. 18) it shows clearly how such a formalisation should go. The
language in which his system of plane geometry is to be formulated as a
formal theory in our sense has the 1-place predicates P(oint) and L(ine)
and the 2-place predicate (lies) O(n) which stands for the relation
between points p and lines l w.hich holds between p and l iff p is "on" l
(or, what comes to the ame thing, is one of the points that make up
l).24 One difficulty with the axioms that Hilbert proposed for a
formalisation in our sense, however, is that some of his axioms cannot
be stated within first order logic. This means that a straightforward

2 3 Among Hilbert´s axioms we find not only statements familiar from Euclid,
such as that through any two points there goes exactly one straight line, but also
that for each line there is at least one point that does not lie on it, or that for two
points A and B on a line l there is at least one point C on l such that B is between A
and C. All steps in geometrical proofs that seem to rely on some kind of
"geometrical intuition" prove to be instantiations of general principles of this
kind.  The difficulty we find in deciding which auxiliar lines we should draw in
order to obtain a proof for a given theeorem if geometry are just illustrations of
the difficulty well known to anyone familiar with deduction within predicate
logic: How do we decide which instantations of universally quantified premises
will be useful in the subsequent course of a given derivation and should therefore
be carried out?

Ever since computers came of age, the possibility has been explored of making
them take over various tasks that arise within mathematics. Although Gödel's
incompleteness and undecidability results (which antedate the birth of the
modern computer by roughly 15 years) had established that mathematics cannot
be reduced to mere computation, there are nevertheless certain mathematical
tasks at which computers are much better than human beings, simply because
they can perform certain elementary operations with such vertiginous speed that
it doesn't matter if they perform lots and lots of these without tangable benefit as
long as there are just a few that enable them to go ahead. Among the successful
applications of computer power within mathematics are programs which make
the computer search for proofs in formalised geometry, in which instantiations of
universally quantified axioms play a pivotal role. In this way it has actually been
possible to discover geometrical theorems, which until then had escaped attention,
notwithstanding the huge amount of energy that man has spent on the discovery
of new facts about geometry since antiquity. In some cases one could only be
amazed that  noone had stumbled on the theorem before. [Reference to Boyer &
Moore].

2 4 Hilbert's system is an axiomatiosation of 3-dimensional geometry which
contains Euclidean plane geometry as a proper part. Here we focus just on this
p a r t .
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formalisation would lead to a theory within second order logic, i.e.
within a logical formalism which we have not so far considered.

Moreover - and more importantly - second order logic differs from first
oder logic in that it does not admit of a correct and complete proof
system; there can be no Correctness-and-Completeness Theorem for
second order logic. (This is one of the consequences of Gödel's
Incompleteness results.) Therefore, from a methodological point of
view formalisations within second order logic are less satisfactory than
formalisations within first order logic; they do not permit the kind of
algorithmisation of inference that correct-and-complete proof systems
for first order logic provide for axiomatic first order theories. It is true
that there exist certain general methods for approximating second
order theories by first order theories, in which one makes use of first
order axiomatisations of set theory (see section 1.3 in the present
chapter and, for details on Set Theory, Ch. 3). But in general the results
of these methods are genuine approximations, which are logically
weaker than the theories they approximate not only with regard to
their second order but also to their first order consequences. (In other
words, there will be statements from the first order language of the
approximating theory which are not theorms of that theory although
they are logical consequences of the original theory which the first
order theory approximates.)

In the particular instance of Euclidean Geometry, however, it is possible
to do better. Hilbert's second order axiomatisation can be replaced by
a first order theory that covers all of its first order consequences. In
fact, this first order theory is complete in the sense of Def. 19:  each
sentence A belonging to the language of the theory is either itself a
theorem or else its negation is. One way in which this complete theory
can be obtained is to interpret plane geometry "analytically", i.e. as
speaking of "points" that are given by pairs of real numbers (which we
can think of as their x- and y-coordinates). In this analytical
interpretation lines can also be identified with pairs of real numbers, to
be thought of as the coefficients of linear equations. (The line
consisting of all points satisfying the equation y = ax + b can be
identified with the pair of numbers a and b.) The relation of a point
lying on a line then becomes the relation which holds between a
number pair (r,s) and a number pair (a,b) iff s = ar + b. In this way
geometrical statements translate into statements about real number
arithmetic. It was proved by Alfred Tarski (1901-1983) that the
arithmetic of the real numbers admits of a complete firsst order
axiomatisation.  This is one of the most striking results of modern
mathematical logic. It is especially suprising in the light of Gödel's
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proof of the impossibility of a complete axiomatisation of arithmetic on
the natural numbers. In fact, in combination these two results may
seem quite paradoxical.  More on this in Ch.2, Section 2.6.

Formal Deduction and Human Reasoning

Tarski´s axiomatisation of real number arithmetic provides us with a
theory which contains as theorems not only every statement in the
language of real number arithmetic that has a geometrical
interpretation (in the sense of analytical geometry indicated in the last
subsection) and is true on that interpretation. It also has numerous
theorems that have no such geometrical interpretation. (In fact, those
are, speaking somewhat loosely, the vast majority.) This is an indication
that the theory isn't dealing with geometry directly, but rather with a
kind of (numerical) interpretation or analogue of it. This observation
brings us to another aspect of formalised geometry. We claimed earlier
that the possibility of formalising plane geometry within predicate logic
showed that methods of proof and inference in geometry are in last
instance reducible to the universally valid deduction principles of
general logic. From a purely formal perspective this claim is correct
and incontrovertable. But there is also another dimension to this issue,
which concerns the way in which we, human beings with the particular
kind of cognitive endowment with which evolution has equipped us,
reason about spatial information.

The question how we process information can be raised in relation to
information of all sorts. But it has a particular importance in
connection with information about space. In the lives of the vast
majority of us visual information occupies a central and exceptionally
important place. By and large it is what we take in through our eyes on
which we rely in almost everything we do.25 It is this kind of
information that we use to find our way, to find food, to keep ourselves
from stumbling or bumping into things when we move around, to
recognise dangerous things and creatures from a distance at which it is
still possible for us to avoid or outrun them; and so on. Furthermore,
while visually acquired information tends to be very rich and complex
there are many situations in which it must be processed very rapidly.
Fast processing of visual information is of ubiquitous practical
importance and often it is what decides between life and death. Had we
not been as good at it as we have become in the course of evolution the
human race (or some ancestor of it) would have been wiped out long

2 5 This is not to deny that losing the use of any of our other senses constitutes
a serious handicap too.
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before we would have reached our present stage of development, in
which we have the capacity to reflect on the properties of our own
cognitive system and the way it relates to questions of formal logic.

Such considerations suggest that the ways in which we  reason in
geometry - the ways in which we find, state and understand proofs of
geometrical theorems - may well be an outcrop of the ways in which we
handle spatial, visually accessed or visualised information generally.
That geometry - the science which deals with the structure of the space
in which we exist and move and must see that we somehow survive -
can be reduced to pure logic in the way indicated above was without
any doubt a major scientific discovery. But that discovery tells us
nothing about the ways in which humans reason - or how they reason
most comfortably and effectively - about thee contents and structure of
space.

How human beings process visual information, and how they process
spatial information that is not visually acquired (which for all that is
known at present need not be the same thing), are questions of the
utmost importance to cognitive science. And they are questions about
which much is still unknown. But they are not among the questions on
the agenda of formal logic and they will play no further role in these
notes .

T r u t h

Directly related to the cognitive issues raised in the last four
paragraphs is the third issue to be discussed in this section. This is the
question in what sense spatial or geometrical statements can actually
be said to be true or false. Fast and accurate processing of spatial
information is important because it is information about the world in
which we live and struggle to keep alive. If the premises from which we
draw spatial conclusions - about how far a predator or a prey is away
from us, where a projectile approaching us will hit us if we do not
protect ourselves from its impact or step out of its way, etc. - aren't
true, then there is no relying on the conclusions we draw no matter
how sound the principles we apply in drawing them may be. Sound
inferencing is truth-preserving; but when premises aren't true, then
there is nothing to preserve.

Fortunately much of the information that we obtain by looking around
is quite trustworthy, and so are the general principles about space and
motion which our cognitive system makes use of when we draw
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inferences from information thus obtained.  So for the most part the
inferences we draw are  true in their turn and it is on the whole good
policy to make use of them in our further deliberations and actions.

All this presupposes that statements about space - the general claims of
geometry among them - can be distinguished into those that are true
and those that are false. But what does it mean for a statement of this
kind to be true or false? Before we address this question first a few
words about one that is even more fundamental: What is truth in
general - what is it for any statement, whatever its form or subject
matter, to be true or false? Questions that are phrased in such very
general terms may not admit of useful answers, and it is wise to
approach them with care. But of course that is no reason for shying
away from them altogether.

In fact, the question of truth has been a central concern of
philosophers at least since Socrates and Plato, and it plays an
important, and often central part in the thought of many of the leading
philosophers from antiquity to the present. Neverthelesss, it wasn't
until the 20th century that a method for defining truth was developed
which is exact and at the same time very general. This is another major
accomplishment of Tarski. Tarski's contributions to the theory of truth
are among the most important results in philosophy of the past century
and they have become the foundation of essentially all semantics within
formal logic. Tarski's  work on truth involves two learly distinct stages.
In his essay "The Concept of Truth in formalised Languages" from 1935
he showed how truth can de defined for a quite special case - that of
the sentences of a language designed for talking about one particular,
comparatively simple but well-defined domain, consisting of classes
structured by the relation of class inclusion. Tarski showed in a fully
explicit way how the truth value of any sentence of this language is
determined by on the one hand the subject matter about which it
speaks and on the other by its own syntactic form.2 6

This definition is a definition of an absolute  notion of truth, for one
particular language with a fixed and well-defined subject matter.
Eventually this absolute notion gave way to the relative notion of truth
2 6 Another important result of this essay is that it spells out in the clearest
possible detail what conditions have to be in place in order for a truth definition
of this kind to be possible: The definition must be stated in a metalanguage which
is capable of describing on the one hand the "object" language for whose
statements truth is to be defined and on the other the relevant properties of the
domain that the object language is designed to speak about. (Another, obvious,
condition is that both the object language and its subject matter must be
understood well enough to begin with in oder that descriptions of them can be
exact and yet recognisable correct.)



9 8

that is the central concept in what has come to be known as model
theory. (This is the notion of truth that was given in the opening
section of this chapter - see Def. 7 of Section 1.1.2 - and that has been
explicitly or implicitly present in more or less everything that has been
discussed in this chapter from that point onwards.) In definitions of
this relative notion of truth - i.e. of truth in a model - the fixed
application domain of Tarski's 1935 essay is replaced by a
quantification over arbitrary domains. These domains, we have seen,
are specified in the form of models for the given object language -
arbitrary structures consisting of a "universe" together with
interpretations, relative to this universe, of the language's non-logical
constants. In this way the truth definition becomes a complex
statement in the meta-language which involves wide scope universal
quantification both over expressions of the object language L and over
models for L. We can get back from this more general definition of
relative truth for a language L to a notion of absolute truth by
instantiating the universally quantified variable which ranges over
models for L to the particular structure that is L's intended subject
ma t t e r .

Suppose now that we have a language L which we use for talking about
some part of reality - in other words, that this part of reality is the
intended subject matter of L. And let us suppose that a division of the
sentences of L into those that make true statements about this subject
matter and those that make false claims about it is somehow given.
Suppose further that we want to come up with a formal theory T that
contains the true statements of L as theorems - or, if that turns out to
be asking too much, then as many of the true sentences as possible -
and none of the false ones. In general the design of T will involve the
choice of a particular logical language L' in which T is to be stated, and
in that case the relationship between L' and L will have to be made
explicit. (Typically this is done by specifying how sentences of L are to
be translated into sentences of L'.) However, for the present discussion
there is no harm in making the simplifying assumption that L and L'
coincide. Under this assumption the requirement on T can be
formulated as follows:

It must be possible to cast the part of reality that L is used to
speak about in the form of a model for L (in the sense of 'model'
defined in the model theory for first order logic) and moreover
this model must be a model of T.

In the optimal case where T captures as theorems all sentences of L that
are true in its intended domain, T will be a complete theory and the
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model in question will be elementarily equivalent to all other models of
T. In the suboptimal case, where T captures some but not all true
sentences of L, T will have other non-equivalent models besides.

What does it mean for the given part of reality to be able to play the
part of a model of T? Since we are focussing on theories formalised
within first order logic the answer to this question might seem
straightforward: (i) the given part of reality must determine a universe
U and (ii) it must determine interpretations relative to U for each of
the non-logical constants of L. But how are these components fixed? In
particular - and here we return to the example that provoked this
discussion - how are they fixed in the case of plane geometry? This is
yet another question that may look simple at first sight, but which,
when we look more closely, reveals itself as anything but. First, what is
the "part of reality" that the language L of plane geometry is used to
speak about?27 Actually, in the case of plane geometry this isn't quite
the right way of putting the question, for there isn't just one such part
of reality, but - for all we know - indefinitely many: each "flat" plane in
the three-dimensional space in which we live is a part of reality in
which we expect the full range of truths of plane geometry to be
exemplified.  Which parts of this space qualify as "flat planes" is a non-
trivial question (about which more below). But it is one of the deep-
seated commitments that are part of our conception of plane geometry
that if there is one part of space that qualifies as a flat plane in the
sense of Euclidean Geometry, then there must be an unlimited supply of
such parts.

What are examples of flat planes - or, rather, fragments of flat planes
since according to the theory a Euclidean plane extends infinitely in all
directions and such planes are hard to come by - in the world in which
we live? Answers that might come to mind to someone who hasn't
thought about the matter too much might be: the surface of a pond or
a lake on a day when there is no wind; a sheet of well-made paper
(which has no unevennesses); the floor of a properly constructed
building; the surfaces of well-constructed tables or desks; an area of
land that is without hills or dips or crevasses; and .. and .. .

Let us accept this answer for what it is and ask what would be the
points and straight lines (or fragments of straight lines) that are

2 7 We may assume here that L is the first order language indicated above when
we said what a formalisation of Hilbert's theory of geometry as a theory of formal
logic would look like: Recall what we aaid there: the non-logtical vocbulary  of L
should consist of: two 1-place predicates for "point" and "line" and a 2-phace
predicate for "lies on".
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contained in such physically concrete (fragments of) planes. In
reflecting on this question it is helpful to concentrate on just one of the
cases mentioned in the answer suggested in the last paragraph. We
choose the case of a sheet of paper, which for our purpose is a
particularly natural choice, since it ithis kind of "flat plane fragment"
that people engaged in doing geometry in the familiar traditional way,
using diagrams for guidance inspiration and support, often use.28 The
"points" and "straight lines" that somebody doing geometry on paper
will be actually working with are dots he makes on the sheet with a
pencil or pen, and lines that he draws on it, typically with the use of a
ruler. But dots, no matter how fine the pencil or pen that we make
them with, have a finite diameter, whereas the points of Euclidean
Geometry are assumed to be infinitesimally small. Similarly, the lines
we draw will always have finite width, while the width of a straight line
in Euclidean Geometry is, like the diameter of a point, supposed to be
infinitesimally small too. What does this mean for the question whether
the kinds of statements that geometry is promarily concerned with -
such as, to pick out just two examples more or less at random, the
statement that the three angles of a triangle always sum up to 180° or
the statement that the bisectors of a triangle meet each other at a
single point - to be true? That is actually a quite difficult problem and
at the same time it is one whose importance it would be hard to
overestimate. Roughly what one would like to say is that figures
composed of the "points" and "lines" realised on a sheet of paper in the
manner just described can do no more than confirm the statement
"approximately", or "within a certain margin of error", where the
margin of error is determined in some way by the finite "thickness" of
the given "points" and "lines" of which the figure is made up.

The first difficulty here is that we would need a precise way of assessing
how  the margin is determined by the imperfections of the given
"points" and lines (i.e. by their diamteters and the extent of their
"thickness"). But even if this problem can be satisfactorily solved, there
still is the further problem how confirmation is related to truth.  One
aspect of this second problem is revealed by a distinction familiar from
the philosophy of science: given a certain margin of error that is
associated with a concrete figure the figure can in principle provide a
conclusive refutation for a geometrical statement of the kind
exemplified by the two mentioned above. For instance, consider the
(plainly false) analogue of the statement that the bisectors of the angles
of a triangle meet each other in a single point, viz. the statement that

2 8 It is easy to see, however, that the fundamental difficulties we are about to
point out arise equally in relation to any of the other examples of concrete planes
just mentioned. We will cometo this presently.
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the bisectors of the four angles of an arbitrary quadrangle all go
through the same point. If we can draw a quadrangle in which the
intersection points of two pairs of bisectors are farther apart from each
other than the margin of error associated with the figure permits on
the assumption that they should coincide, then that shows
conclusivelythat the statement is false. In contrast, concrete figures can
confirm geometrical statements of this sort only to the degree that
their error margin allows. Consider for instance the statement that
there is a common intersection point for the bisectors of a triangle. The
best we can expect from a drawin diagram of a triangle with its three
bisectors is that it confirms the statement within the given error
margin . But that tells us nothing about what we will find when we test
the statement at the hand of figures for which the associated error
margin is significantly smaller. Thus, no matter how "good" our figures,
no matter how small their error margins, agreement with all those we
have considered would be partial evidence at best that the statement
would also be confirmed by figures with even smaller error margins.

It should be plausible without further discussion that these problems
arise not only for the case where the concrete realisations of points,
lines and figures are dots and drawings on sheets of paper, but also for
other ways in which points and lines can be concretely realised. And it
should also be intuitively clear that these difficulties are compounded
by the deviations from perfect flatness that afflict the planes or
surfaces in which the given realisations of points and lines are
embedded .

In short, the relation between the theory of geometry and its physical
realisations is full of pitfalls and surprises.29 And what can be observed

2 9 One of the ironies in the history of science is that when straight lines are
identified with the paths of light rays - and that, it has been agreeed for centuries,
is about as good a conrete identification of the geometrical concept of  a straight
line there is to be had; in fact, the method of triangulation in land surveying and
in astronomy is based on it -, then,the geometry of the space in which we live is
not  Euclidean (e.g. the sum of the angles of triangles whose sides are formed by
light rays is not equal to 180°). This conclusion follows from Einstein's theory of
General Relativity and at the present time it is also supported by substantial
emporocal evidence. (e.g.. by certain (very large) triangles whose sides are paths
of lihgt rays and whose angles do not add up to  180°).

It is important, by the way, to distinguish between this issue - whether on this or
any other physical identification of straight lines physical space is or is not
Euclidean - and the question whether Euclidean Geometry is, as Kant had it, built
into the way in which we process spatial information. Although this conjunction -
a non-Euclidean space determined by physical phenomena combined with a
human cognition based on Euclidean geometry - is something that cannot really
be accommodated within Kant's general conception of mind and world, one should



1 0 2

for this particular relation is in many ways paradigmatic for what we
find with theories of other real world phenomena, such as. among
others, those of physics, chemistry or astronomy. Even in the best of
cases the general statements that play the part of axioms or theorems
when the theory is formalised are only confirmed by the relevant
phenomena that have been considered within the error margins
associated with these. A more detailed analysis of such theeories
reveals that in each individual case - consisting of the set of phenomena
to be accounted for and the theory that is porposed to account for
them - the relationship between confirmation and truth comes with its
own special difficulties. But there are nevertheless also a range of
problems that all such cases have in common.  An entire discipline,
known as "Scientific Methodology" or as the "theory of Scientific
Method", has grown up around the investigation of these general
problems. Among other things it currently includes substantial parts of
statistics and the theory of probability.

Scientific methodology is not among the topics of these notes. Nor does
it have to be. For our actual concern here, viz. the formalisation of
scientific theories, a detailed analysis of statement conformation isn't
really needed. In this context it is enough to assume that such an
analysis is in place and that it will provide us in each relevant case - in
each case where the question arises how a theory of some part or
aspect of reality might be formalised as a theory in the sense of logic -
with (i) a set Tr of sentences from the given language L within which
the theory is to be formalised that count as true, (ii) a set Fa of
sentences of L that count as false and (usually) (iii) a remaining set Un
of sentences of L which neither count as sufficiently confirmed to be
included in Tr nor as sufficiently disconfirmed to be included in Fa. Any
formalised version T of the theory will have to be consistent with this
tripartite division of the sentences of its language in that (i) none of the
sentences in Fa are among the theorems of T and (ii) the theorems of T
include as many sentences from Tr as possible.30 In cases where Un is
non-empty - and it may be assumed that in practice that will allways be
so - T will have new predictive power vis-a-vis the data set (Tr,Fa,Un> if
and when it contains theorems that belong to the set Un. For if S is a
sentence of  L such that S & T Un, this means that according to T S
should really belong to Tr rather than to Un.  Further empirical
investigations will then be needed to see if this prediction is correct.

nevertheless credit Kant with having discovered a way of looking at the question
of spatial structure from an essentially cognitive perspective.
3 0 Note that this representation of the general situation is a refinement of the
one given on p. 98.
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There is one further aspect of what we have said about the verification
of geometrical statements in concrete settings that deserves to be
mentioned. This is the question what should be considered the "true"
subject matter of Euclidean Plane Geometry. As was already implied
earlier one natural way of seeing Euclidean Geometry is as a theory that
talks such ideal entities as dimension-less points and lines, and only
indirectly about their concrete but imperfect realisations. And indded,
it is structures made up of such ideal entities, and not parts of physical
reality, that we find among the models of Eisclidean geometry when it is
formalised as a logical theory. Or, put in almost equivalent terms but
from a slightly different perspective: to the extent that the models of
this theory can be thought of as "gemoetrical structures at all, they
should be thought of as made up of ideal, dimension-less points and
lines rather than of entities with non-infinitesinal size or width. Seen
from this angle the accomplishment of Euclidean Geometry, when we
look upon it as a theory of the "points" and "lines" that we encounter in
real life, isn't just that it offers a certain set of postulates towards the
description of these entities with their spatial properties and relations,
but also that it presents us with a certain idealised conception, which
manifests itself formally in the model (or models) of these postulates.

In the case of Euclidean geometry this way of seeing the theory's true
accomplisment is particularly compelling. For as Hilbert was able to
show, the axioms that he had come up with define (up to isomorphism)
a single model, viz. the structure R  R , the cartesian square of the
structure R of the real numbers with the usual arithmetical operations
of addition and multiplication.31 The models of theories for other
empirical phemomena are not always reconstructable from their
axioms in this unique and explicit way. But nevertheless many of those
theories can also be seen as providing not simply some set of
postulates, but rather a combination of postulates and an abstract

3 1 To obtain this result one has to make use of certain axioms that are
essentially second order. (If all axioms were first order, then Hilbert's unique
model result could not hold, as we have seen in connection with the Skolem-
Löwenheim Theorems.) Indeed, as we noted earlier, Hilbert's axiom system does
include such axioms, the Archemedean Axiom and what he called the Completeness
Axiom. (We must refer the reader to Hilbert's Foundations of Geometry or some
other foundational text on geometry for an explanation of what these axioms say.)
Tarski's complete axiomatisation of the first order fragment of Hilbert's theory
comes (almost) as close to the ideal of unique characterisation as a first order
theory ever can, in that it is not just complete, but categorical in the cardinality of
the target structure  R  R . (It then follows from Morley's Theorem that the
axiomatisation is categorical in all uncountable categories. However, the
axiomatisation is not categorical for countable models. For more on Tarski's
axiomatisation see Section 2.6.2.)
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conceptualisation that manifests itself as one or more of the postulates'
models and to which the phenomena themselves are related by
approximation. Examples o such theories abound. Newtonian celestial
mechanics, which should be thought of as speaking of structures
consisting of entities that are dimension-less points with finite mass,
Galilei's theory of free fall, which directly speaks of objects that are
propelled by gravity but are not affected by friction, are among the
cases that most of us have heard of; but there are countless others.

Theories which do not describe the phenomena they aim to account for
strictly and directly, but are most naturally viewed as descriptions of
idealised structures, to which the phenomena themselves stand in
complex approximation relations, throw an interesting light on the
meaning of the term 'model'. On the face of it, the use that is made of
this term in formal logic does not seem to correspond to what most
people - scientists as well as persons without a specific scientific
background - understand by it when they talk about 'modelling' certain
phenomena or aspects of the world. In their use of the term there is no
clear distinction between model and theory. The theory itself is said to
"model the phenomena". On this use of "model", theory and model are
one. This is clearly a quite different way of understanding the relation
between theories and models from the one that is favoured in formal
logic. According to the model-theoretic conception adopted there,
model and theory are, as we have seen, to be distinguished sharply:
theories are syntactic objects (sets of sentences) and models semantic
structures, about which the sentences from the language of the theory
make true or false assertions.

Formal theories which treat the phenomena that they are meant to
account for as approximations to some ideal structure can be seen as
providing a link between these two conceptions of 'model'. The
structures that are models of such a theory in the sense of model
theory - those in which the axioms of the theory are strictly and
literally true - can be seen at the same time as abstract structures
which model the phenomena in the sense in which the term is used by
most other people.  Inasmuch as the abstract structures can be
considered part of the package that theories offer towards description
and explanation of the phenomena, the theories can be seen as
providing us with models of the phenomena (or, to use the saame
phrase once again, as modelling them) in the non-logicians' sense. But
when we look inside the packages, what we see are theories  and
models as sharply distinct as the logicians want them to be, with the
theories as syntactic objects identified by their axioms or theorems and
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the models as the non-syntactic structures in which the axioms and
theorems are true.

As argued in the last two paragraphs, theories that come with abstract
structures of which they can be seen as the direct and literal
descriptions, but which at the same time function as idealisations of
some empirical domain, play a kind of double role. On the one hand
they can be regarded as theories of the empirical domain in question
and thus as empirical theories. On the other they can be seen as formal
descriptions of the given abstract structure or structures to which their
theorems are directly applicable. In a case like that of plane geometry,
where the abstract structure is one that can be defined in purely
mathematical terms (viz. as R  R ), it is therefore possible to look upon
the formal theory itself either as a theory of applied mathematics,
which tells us something about the structure of physical space, or
alternatively as an account of a purely mathematical structure and thus
as a theory of pure mathematics. Both views are legitimate, and at least
in this particular case the question which way the theory should be
classified is not something that can be settled once and for all. What
anyone will want to say will depend on the particular context in which
the theory is viewed by him or used.

The distinction between pure and applied mathematics is fraught with
difficulties and the difficulties vary with the particular branch of
mathematics that we consider. But the ambivalence we have just noted
for the case of geometry arises for many other branches of
mathematics as well.

This is all that will be said in these notes about the meaning and use of
formal theories within a wider scientific context. It should have been
clear that what we have said is no more than the tip of a very large
iceberg. But it is enough to enable us to raise the last question that is to
be considered in this section: How useful can formalisations be?

How useful is Formalisation?

When you ask an empirical scientist - e.g. a physicist or a chemist -
what he thinks about the usefulness of dformalising the theories he is
concerned with within formal logic, his reaction is likely to be one of
scepticism, perhaps even of derision. And much the same reaction can
be expected from most mathematicians. The reason for this is simple.
What is perhaps the most important conceptual advance connected
with logical formalisation - the implication that any form of valid
inference can be reduced to principles of general logic - turns out in
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practice to be more of a nuisance than an advantage. When proofs in
pure or applied mathematics are cast in the form of logical derivations,
in which every step is an application of such principles, they tend to
become inordinately long, unsurveyable and well-neigh impenetrable to
human understanding. Moreover, it is only rarely that such logical
proof expansions reveal anything new or important. Actual
formalisations of mathematical or scientific theories, in which proofs
take the form of such derivations, are thus the source of unnecessary
complications, and that almost always without compensating benefits.

It is important however to distinguish between (i) actual formalisation
of theories and their use in mathematical or scientific research and (ii)
the possibility of formalisation:  When can a theory be formalised, and
what does its formalisation look like, and what can that tell us about
the theory's intrinsic structure (the structure it possesses whether we
formalise it or not)? We have already encountered a number of non-
trivial questions connected with formalisability and seen glimpses of
the light that formal logic can throw on them. The results we
mentioned about the formalisation of geometry are a telling example:
Hilbert's axiomatisation determines a unique model, a structure that
can be defined independently, by using methods and principles of
arithmetic rather than geometry (successive applications of certain
number-theoretic closure operations, leading from the natural all the
way to the real numbers); this axiomatisation is therefore essentially
second order, but a complete first order axiomatisation of the first
order fragment of his theory is possible as well. These are deep results,
that have been obtained - and could only have been obtained - by the
methods of logic; and yet their importance is not restricted to logic as
such, but extends to the theory's intended subject, the structure of
space. In this regard they are representative of formal results about
logical theories, which give us insight into the possible forms that
formalised theories can take and into the logical properties associated
with different forms of formalisation.

What was presented in Section 1.5.1 are the very first steps of the
logical investigation of theories formalised within first order predicate
logic. In Chapter 2 we will look at a number of such theories, each of
which will reveal new aspects of this investigation. Not all of these
aspects are directly relevant to the importance of formalisation (as a
possibility, rather than an actual practice) for mathematics and
science. But many of them are, and between them they yield an
understanding of the logical stucture of theories (whether they be
stated in the form of logical theories or not) that we could not have
reached in any other way.
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Exercises to Ch. 1.

1 . (Comparative cardinalities of some infinite sets.)

( i ) Show that the following sets are equipollent with the set NN
of natural numbers.

a . the set of all positive natural numbers
b . the set of all odd natural numbers
c . the set of all multiples of 51
d . the set of all natural numbers that are squares
e . the set of all prime numbers
f . the set ZZ  of the integers
g. the set QQ   of the rational numbers
h . the set of all complex rational numbers

(= the set of all numbers r + i.s, where r,s &  QQ   a n d
i = -1)

i. the set of all pairs <n,m> of ingtegers n and m
j. the set of all finite sequences of natural numbers

( i i ) Show that the following sets are equipollent with the set RR
of real numbers.

a . the set of all real numbers  0
b . the positive real numbers
c . the closed real number interval [0,1]
d . the open rela number interval (0,1)
e . the set CC   of complex numbers, i.e. the numbers
f . the set RR   \ QQ , of the irrational real numbers 
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2 . (Finite and Infinite)
Suppose that X, Y and Z are sets and that X  Y. Prove:

( i ) X  Z iff Y  Z;
( i i ) Z  X iff Z  Y;
(iii) X  Z iff Y  Z;
( iv) Z  X iff Z  Y.

3 . Suppose that Y is a finite set. Show:

( i ) If X  Y, then X is fintie
( i i ) If X  Y, then X is finite.

4 . Suppose that X, Y and Z are sets, that Y  X and that X Z = .
( i ) Show: Y Z  X Z.
( i i ) Show that the condition that X Z =  cannot be dropped.

5 . ( i ) Suppose that X is finite and Y infinite.  Show that (X  Y).

(N.B. Intuitively one would want a  stronger result, viz. that
X  Y.  This would follow from the general principle that for
any two sets A and B X  Z or X  Z.  We will establsih this
result only in Ch. 3. One might have thought that under the
special conditions that X is finnite and Y infinite this result
could be obtained with elementary means.  But as far as we
know this is not so.)

( i i ) Suppose that X and Y are finite sets.  Show that X Y is
finite.

6 . Prove Propositions 5 and 6. (See pp, 77,79)

7 . a . Let M be a model for some language L, and let Th(M) be the
set of all sentences of L which are true in M.  Show:  Th(M)
is a complete consistent theory of L.

b . Let M  be a non-empty class of models for the language L.
Let Th(M ) be the set of all sentences of L which are true in
each model M from M .  Show: Th(M ) is a consistent theory
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of L.

8 . Show:  Every infinite model is elementarily equivalent to a 
denumerably infinite model.

9. Let L be some first order language, let X be some
denumerably infinite set and let K  be the set of all finite models M
for L with UM  X.  Let T be the theory Th(K).  Prove that T has
infinite models.

10.  Let L be the language {<}, with < a 2-place predicate.  For each
positive integer n, let Mn be the model  Un, <n >, where Un  is the
set of the numbers {1, 2, ..., n} and <n is the standard 'less than'
relation between the numbers in UM n.  Let T be the set of
sentences of L which are true in every model Mn (i.e. in all models
M n for n = 1, 2, ..).

( i ) Show that T has infinite models and that these are all liner
orderings.  (That is, if M = <U,<> is such a model then, < is a
linear ordering of UM .)

( i i ) Show that rthere are infinite linear orderings that are not
models of T.

1 1 . Let M  be a finite set of finite models for some given finite
language L. Show that there is a sentence AM  such that for every
model M' for L:
 M' A M   iff M' is isomorphic to one of the models in M .

1 2 . A theory T of some first order language L is said to be axiomatised
by the set A of sentences of L iff T =Cl(A ).  T is said to be finitely
axiomatisable  iff there exists some finite set A which axiomatises
T.

a . Show that T is finitely axiomatisable iff there is a single
sentence of L which axiomatises T.

b . Show that T is not finitely axiomatisable iff there is an
infinite set A of sentences {A1, A2, A3, ...}, which
axiomatises T and which has the property that for n = 1,2,..
An is properly entailed by An+1:
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An+1  An, but not An  An+1.

1 3 . Let T be a theory of some 1-st order language L which only has
finite models.  Then there is some natural number n such that every
model of T has cardinality < n.

1 4 . Let T and T' be theories of L such that both T T' and Cl(T T')
are finitely axiomatisable.  Then T and T' are themselves finitely
axiomatisable.

1 5 . Let L be a 1-st order language with a finite set of non-logical
constants and let T1, T2, .. be an infinite sequence of theories of L such
that for i = 1,2,... Ti+1 is a proper extension of Ti  (i.e. Ti T i+1 but not
Ti+1 Ti).  Show that every Ti has infinite models.

1 6 . Let L be a language of first order predicate logic which does not
contain function constants of arity > 0 (i.e. of more than 0 places), let P
be a predicate not occurring in L and let L' = L {P}.  Let the translation
* of arbitrary formulas A of L into formulas A* of L' be defined as
follows:

( i ) A*  =  A ,  in case A is atomic;

(ii)  ( A)*  =  (A)*, (A & B)*  =  A* & B*, (A v B)*  =  A* v B*,
(A  B)*  =  A*  B*, (A  B)*  =  A*  B*;

(iii) (( x)A)*  =  ( x)(P(x) & A*), (( x)A)*  =  ( x)(P(x)  A*).

Let B  be the set of all sentences A* of L' that are translations of
sentences A which are tautologies of L:

B  =  {A*:  A is a sentence of L and A}.

a . Show that B   ( x)P(x).
b . Show that for all sentences B & B , ( x)P(x)  B.
c . Show that B is not a theory of  L'.

1 7 . Let A be a sentence from the 'pure language of identity'. i.e. from
that language {} of predicate logic which doesn't contain any non-
logical constants.  (So the only atomic fomulas of this language are of
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the form 'vi = vj', where vi  and vj are variables.)  Assume that the only
variables occurring in A are among v1, ... , vn.

Show:

(*) If A is consistent, then A has a model of at most  n elements.

Hint:  Let M und N be models für the language {}.  For assignments f in
M and g in N we define

f   g     iff       ( vi)( vj)( vi, vj   &  {v1, ...,vn }  
 (f(vi) = f(vj)  g(vi) = g(vj)))

By induction on the complexity of the formulas of {} we can prove for
the subformulas B of A (including A itself):

(**) Iff  f and g are assignments in M and N such that f   g, then

[[B]]M,f  =  [[B]]N,g

Show (**) and then prove (*) with the help of (**).

1 8 . Let T be a theory of the language L.

( i ) Let S be an infitnite set of sentences of L and let T = ClL(S)
be the theory 'axiomatised by S. 

Show: T is finitely axiomatisable iff there is a finite
subset S' of S such that  T = Cl(S').

( i i ) Let Lo = {} be the language of first order logic which contains
no non-logical constants whatever.   (So the only atomic
formulas are those of the form "x = y", where x and y are
variables.)
Let So the set consisting of the sentences A1, A2, ... of Lo,
which are defined as follows:

A1  =  ( v1)( v2) ( v1  v2)
A2  =  ( v1)( v2)( v3) ( v1  v2 & v1  v3 & v2  v3)
.
.
An  =  ( v1)..( vn+1) ( i j vi  vj)
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(It is easy to see that An says that there are at least  n+1 
individuals.)

Let To = ClL(So) the theory axiomatised by So.
Show that  To is not finitely axiomatisable.

( iv) Let L be a finite language (i.e. one with finitely many non-
(iii) Let L be a finite language (i.e. ne with finitely many non-

logical constants), let T be an arbritrary theory of L and let
T o be the theory defined under (ii)

Show : When T  To inconsistent, then T is finitely
axiomatisable.

19.  Let L be a first order language and T a theory of L. For arbitrary 
sentences A, B of L we define:

A T B     iff    T   A  B

( i ) Show that T  is an in equivalence relation.

( i i ) Let U be the set of all equivalence classes determined by  T .
For sentences A of L ist  we write "[A]" for the equivalence
class A generaetd by A: [A] = {B: A T B}.

On U we define the following  2-, 1- and 0-place functions:

 D [A]  [B]  =  [A & B]
 D [A]  [B]  =  [A v B]
 D-1 [A]-1       =  [ A ]

D0 0       =  [A & A]
D1 1       =  [A v A]

Show that the structure <U, dass U, , , , 0, 1> is a
boolean algebra. This algebra is known as the Lindenbaum
algebra of T in L, 'LB(T,L)' for short.

(iii). Show the following:

(a)  [A] is an atom of LB(T,L) iff Cl(T { A}) is a complete
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consistent theory.

(b)  LB(T,L) consists of exactly two elements iff T is a
complete and consistent theory of L

( c ) Let Lo = {} be the language of first order logic which
contains no non-logical constants whatever. Let V be
any logically valid sentence of Lo.
Then the atoms of LB(V,Lo) are the equivalence
classes [ B n] of the sentences Bn, which assert that
there are exactly n individuals.

( iv) . Give an example of a language L and theory T such that 
LB(T,L) is finite but consists of more than two elements.

2 0 . T1 and T2 are theories of some first order language L.

Show:   (i) T1 T2 is a theory of L.
   (ii) T1 T2 is a theory of L iff either T1 T2 or T2 T1.

2 1 . L is a language of first order predicate logic. recall that by TL we
understand that theory of L which consists of all and only the
tautologies of L.  Let T be an arbitrary theory of L.  We define:

T = { T': T' is a theory of L and T  T' is inconsistent}

T = { T': T' is a theory of L and T  T' =  TL}.

Show: (i) T and T are both theories of L.

(ii)  T T .

(iii) For any theory T of L there are the following two
possibilities:

( a ) T is finitely axiomatisable.  Then there is a
sentence A such that A axiomatises T,
T = T  = Cl( A) and T T  

( b ) T is not finitely axiomatisable.
Then T = T  = TL but not T T  
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2 2 . Let M be a model for a language L and let N  be the following
class of models for L: N = {M': ( A)(M A & M'  A}.  Let L be
the set of all tautologies of L.
Show:  Th(N ) = L iff Th(M) is not finitely axiomatisable.

23. Let L be some language for predicate logic let X be some
denumerably infinite set and let K  be the set of all finite models M
for L with UM  X.  Let T be the theory Th(K).  Prove that T has
infinite models.

2 4 . Let L1 be the language {0, S, <, c1} of first order predicate logic, in
which 0 and c1 are individual constants, S is a 1-place predicate
constant and < is a 2-place predicate; and let L2 be the language
L1  {c2}, where c2 is some individual constant not in L1.

Let T1 be the theory of L1 which is axiomatised by A1-A6 and let
T2 be the theory of L2 which is axiomatised by A1-A7.

A1. ( x) (x  0   ( y) x = Sy)
A2. ( x)( y) (Sx = Sy  x = y)
A3. ( x)( y) (x < y  y < x)
A4. ( x)( y) ( z)((x < y  &  y < z  &  x < z)   x < z)
A5. ( x)( x  <  Sx)

A6. no <  c1 , for n = 1,2,3, ... ,
where for any natural number n, no is the term "SS....S0",
consisting of a "0" followed by n occurrences of "S".
(Thus A6 is an axiom schema which consists of an infinite
number of individual axioms, one for each n. )

A7 nc1 <  c2 , for n = 1,2,3, ... ,
where for natural numbers n, the term nc1 is defined just as
no except that its first symbol isn't "0" but "c1" .
(So A7 also consists of an infinity of axioms.)

Show that

( i ) T 1 and T2 are both consistent.
( i i ) T1 and T2 only have infinite models.
(iii) There exists a model M for the language L1 such that
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( a ) M verifies all the sentences of T1.
( b ) There is no expansion M' of M to the language L2

which verifies all the sentences of T2.

2 5 . Let L be the language {f} of first order predicate logic, with f a
2-place function constant. Let %  be the set consisting of the following
five sentences B1-B5.

B1. x y (f(x,y) = f(y,x))
B2. x y (f(x,y) = x  v  f(x,y) = y)
B3. x y z ((f(x,y) = x  &  f(y,z) = y)   f(x,z) = x)
B4. x y (f(x,y)  y   z (f(x,z)  z  &  f(z,y)  y))
B5.  x y x  y

Show that %  has an infinite model but no finite models.

(Hint: A function which satisfies the axioms B1-B4 defines a weak linear
order : x y iffdef f(x,y) = x.)
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Solutions to some of the exercises to Ch. 1.

2 . (Finite and Infinite)
Suppose that X, Y and Z are sets and that X  Y. Prove:

( i ) X  Z iff Y  Z;
( i i ) Z  X iff Z  Y;
(iii) X  Z iff Y  Z;
( iv) Z  X iff Z  Y.

4 . Suppose that X, Y and Z are sets, that Y  X and that X Z = .
( i ) Show: Y Z  X Z.
( i i ) Show that the condition that X Z =  cannot be dropped.

5 . Suppose that X and Y are finite sets.  Show that X Y is finite.

2 . (Finite and Infinite)
Suppose that X, Y and Z are sets and that X  Y. Prove:

( i ) X  Z iff Y  Z;
( i i ) Z  X iff Z  Y;
(iii) X  Z iff Y  Z;
( iv) Z  X iff Z  Y.

Solution to (2.iii).  Suppose that X  Y and X  Z. Let h be a bijection
from Y to X.  We first show that Y  Z.  Let f be an injection from X into
Z. Then h o f is an injection of Y into Z.  Secondly, suppose that Z  Y.
Then there is an injection g from Z into Y.  But then g o h is an injection
of Z into X, which contradicts the assumption that X  Z.  So there can't
be an injection of Z into Y.  So (Z  Y).  Putting the two conclusions
together we get: Y  Z.

3 . Suppose that Y is a finite set. Show:

( i ) If X  Y, then X is fintie
( i i ) If X  Y, then X is finite.
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Solution to (3.i).   Suppose X were infinite.  Then there would be a
bijection f from some proper subset Z of X to X.  Let g be the union of f
and the identity function on Y \X.  Then g is a bijection from Z (Y \ X)
to Y.  Since Z is a proper subset of X, Z (Y \ X) is a proper subset of Y.
So Y would infinite, contrary to assumption.

Solution to (3.ii).   Let f be an injection of X into Y.  Suppose that X
were infinite.  Then there would be a bijection g from X to some proper
subset Z of X.  Then  f-1 o g o f to Z is a bijection from f[X]  to the set
(f-1 o g o f)[f[X]]. Since (f-1 o g)[Y] = Z is a proper subset of X,
(f-1 o g o f)[f[X]] is a proper subset f[X].  So Y would have an infinite
subset, contradicting (3.i).

4 . Suppose that X, Y and Z are sets, that Y  X and that X Z = .
( i ) Show: Y Z  X Z.
( i i ) Show that the condition that X Z =  cannot be dropped.

Solution to (4.i).  Let f be an injection of Y into X. Let g be the union of f
and the identity function on Z \ Y. Then, since X Z = , g is 1-1.
Furthermore DOM(g) = Y Z and RAN(g)  X Z.

5 . Suppose that X and Y are finite sets.  Show that X Y is finite.

Solution to (5.ii). Assume that both X and Y are finite.  Suppose
t h a t
X Y is infinite. Then there is a proper subset Z of X Y and a bijection
f of X Y to Z.  Since Z is a proper subset of X Y, there is a u &  X Y
which does not belong to Z. Since u &  X Y, u &  X or u &  Y.  Suppose that
u &  X.  Define for n = 1,2,.. fn(u) as follows:

( i ) f0 (u) = u
( i i ) fn+1(u) = f(fn (u ) )

Consider the set {fn(u): n & NN }.  We distinguish two possibilities:

(a) for infintely many n fn(u) & X;
(b) there is an n such that for all m > n fm (u) &  Y.
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First consider case (b).  Let n be a number instantiating ther existential
statement (b) and let Y' = {fm (u); m > n}. Then it is easily verified that f
is a bijection from Y' to its proper subset Y' \ {fn+1(u)}. This
contradicts the assumption that Y is finite.

Next we consider case (a). Let X' = {fn(u): n & NN } X.  Define the
function g on X' by the condition that if x &  X', then g(x) is that element
x' such that (i) x' &  X, (ii) x' = fn(x) for some n, and (iii) there is no
positive m < n such that fm (x) &  X.  Then g is a bijection from X' to the
proper subset X' \ {u} of X'.  This contradicts the assumption that X is
finite.

(The following 'solution' to (5) is not correct.  What is the mistake?

'Solution' to (5).   Assume that both X and Y are finite.  Suppose that
X Y is infinite. Then there is a proper subset Z of X Y and a bijection
f of X Y to Z.  Since Z is a proper subset of X Y, there is a u &  X Y
which does not belong to Z. Since u &  X Y, u &  X or u &  Y.  Suppose that
u &  X.

First assume f(u) & X. Note that f[X] = (f[X] X) (f[X] (Y \ X)).  So X
= f-1[(f[X] X)] f-1 (f[X] (Y \ X))].  Put X1 = f-1[(f[X] X)] and X2 =
f-1 (f[X] (Y \ X))].  Clearly,  X1 X2 = and X1 X2 = X. define the
function g on X as follows: (i) for x & X1, g(x) = f(x); (ii) for x & X2, g(x)
= x.  Then DOM(g) = X, RAN(g)  X and g is 1-1.  Moreover, u & (X \
g[X]); thast is, g maps X 1-1 onto a proper subset of X.  But this
contradicts the assumption that X is finite.

Now suppose that f(u) does not belong to X.  So f(u) &  Y.  If f[Y]  Y,
then we are done.  For then f[Y] is a proper subset of Y, since
f(u) &  Y \ f[Y], and thus f restricted to Y is a bijection from Y to a
proper subset of Y. So we may assume that it is not the case that
f[Y]  Y.  So there is a y &  Y such that f(y) &  X.  Let f' be the function
which is like f except that it switches the values of u and y. (That is:
f'(u) = f(y), f'(y) = f(u) and for all v &  X Y such that v u and u  y,
f'(v) = f(v).)  Then we have that f'[X Y] = f[X Y] = Z, u does not
belong to f'[X Y] and f'(u) &  X. This reduces the second case to the
first.  The cxase where u &  Y is com,pletely parallel to that where u &  X.)
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A p p e n d i x .

Soundness and Completeness for the Method of Proof by Semantic
Tableaus.

The proofs of soundness and completeness that were given earlier in
this Chapter concern the axiomatic deduction system presented in
Section 1.1.3.  The completeness proof is fairly involved and this is so
for one thing because it requires showing for a substantial number of
logical theorems that they can be derived from the given axioms.  To
make this task somewhat easier and less tedious a proof was given early
on of the Deduction Theorem. But that proof involves complications of
its own.  Most of these various complications leave one with a feeling
that they are peripheral to the central ideas of the completeness proof
as it is given in 1.1.3 and nourish the wish for a proof that circumvents
t h e m .

This Appendix offers, as an alternative to the proofs of 1.1.3, proofs of
soundness and completeness for the method of demonstration by
semantic tableau construction.  In some ways these proofs are easier,
since the Tableau Method is, by conception and general architecture,
much closer than the axiomatic method to the semantic conception of
logical consequence with which it has to be shown equivalent.  For after
all, proving validity for an argument by the Tableau Method is nothing
other than showing that an attempt to find a counterexample for it
necessarily fails.  (Furthermore, proving soundness and completeness
for the Tableau Method is natural for most of those for whose benefit
these notes have been produced, since the tableau method is the
principal deduction method with which they were familiarised in the
logic course that standardly serves as prerequisite for the present one.)

Unfortunately, proving soundness and completeness for the Tableau
Method isn't quite as straightforward as one might have hoped, in spite
of the fundamentally semantic conception on which the method is
based.  This is because as soon as one sits down to define them with
mathematical rigour semantic tableaux prove to be fairly complex data
structures - much more so than the remarkably simple formal objects
that are axiomatic derivations.  (Recall that these are strings of
formulas which satisfy a small number of simple and easily verifiable
conditions.)  So some of the benefit that one gains from the close
connections between the Tableau Method and the notions of truth in a
model and logical consequence is lost because of by the need to
manipulate these more complex structures.  Still, it would seem to me
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that on balance the completeness proof below is simpler and more
natural than the one given in Section 1.1 of this Chapter.

In what follows familiarity with the use of semantic tableaux will be
assumed.  Nevertheless, as a preliminary to the formal treatment of the
Tableau Method, we begin with an informal summary of the important
features of this method.

Semantic tableaux are structures that are built from sentences of some
particular language L of First Order Predicate Logic. The sentences
occur in either one of two columns, the 'TRUE' column and the 'FALSE'
column. To prove the validity of an argument with premises A1,..., An
and conclusion B one starts with a tableau in which A1,..., An a re
entered under 'TRUE' and B is entered under FALSE.  Rules are then
applied to these sentences and to the ones which result from earlier
rule applications until, roughly speaking, only atomic sentences are
left.  In the course of these rule applications the tableau may split into
different 'branches', each with its own pair of sets of 'TRUE' and 'FALSE'
formulas.  A branch is closed if it contains the same sentence under
both TRUE and FALSE; and the semantic tableau as a whole is closed if
each of its branches is closed.

The purpose of constructing a semantic tableau for an argument
<A1,..., An | B>, with premises A1,..., An and putative conclusion B is to
try and construct a countermodel for it, i.e. a model M in which A1,...,
A n are true and B is false.  This succeeds iff the construction produces
a tableau branch in which all reduction operations have been carried
out and in which there are no explicit conflicts, of the kind that arises
when the same sentence occurs both under TRUE and under FALSE.  A
conflict-free tableau branch in which no further reductions can be
carried out will provide a counter-model for the argument, and thereby
establish its non-validity.

From the present point of view a tableau all of whose branches are
closed is to be considered a failure: it doesn't provide the counter-
model which was the aim of its construction.  However, there is also
another point of view from which it is precisely tableau closure that
should be seen as a success.  Failure to find a counter-model this way,
which manifests itself as closure of all branches of the tableau, has the
status of a proof that no counter-model exists, and thus that the
argument is valid.  This is so because tableau construction is a fully
systematic search for counterexamples - one in which 'no stone is left
unturned', so to speak.  That the Tableau Method is exhaustive in this
strict sense, however, is not immediately obvious and is itself in need of
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a formal demonstration.  So this is one of things we will have to prove
in this Appendix.  (In the syllabus for LFG II the result followed from the
conversion of the tableau method into the method of proof by
deduction in the Sequent Calculus.)

This description of the Tableau Method might give the impression that
more or less all the work that is needed to establish soundness and
completeness of the predicate calculus has already been done: Either
the semantic tableau for <A1,..., An | B> is closed (i.e. all its branches
are closed) and then the argument is valid. or else the tableau has at
least one branch which is not closed and then there is a counter-model;
tertium non datur.  We can rephrase this in the words of principle (P1):

(P1) An argument is valid iff a semantic tableau constructed for it is
closed.

(P1) combines (a) the soundness and (b) the completeness of the
Tableau Method: For an argument <A1,..., An | B> to be valid it is (a)
sufficient and (b) necessary that its semantic tableau is closed.

What has just been said constitutes the gist of the proof of soundness
and completeness of the Tableau Method.  But turning these intuitive
ideas into a proper mathematical argument requires some real work.

To begin, let us list the three propositions for which explicit proofs are
needed:

PR1. If the tableau for the argument <A1,..., An | B> closes, then
<A1,..., An | B> has no counter-model (and thus is semantically valid).

PR2. When the tableau for <A1,..., An | B> has an open branch, then
<A1,..., An | B> has a counter-model (and thus is invalid).

PR3. Every complete tableau (i.e. one in which all possible reductions
have been carried out) is either closed or it has at least one open
branch .

At first blush PR3 may seem a tautology. It isn't quite that, however,
since complete tableaus can be infinite. In fact, infinite. non-closing
tableaux are far more common than finite ones. It is for infinite
tableaux that PR3 is not altogether self-evident. Its demonstration rests
on some (modest) combinatorial properties of set theory.
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Tableau construction involves the application of rules to 'reducible'
sentences occurring in the tableau. The reduction rules are fully
determined by three factors:

( i ) the form of the sentence to which the rule is applied. What rule is
applied is determined by the operator (connective or quantifier) which
has widest scope in the sentence;

( i i ) the question whether the sentence occurs under 'TRUE' or 'FALSE';

(iii) (for the quantifier rules) which parameter is to be used in 
reducing the outer quantifier of the sentence.

(iii) points to one important feature of tableau construction for
arguments of predicate logic, viz the substitution of 'parameters' for
variables bound by outer quantifiers.  In some cases the parameters
used belong to the tableau already, but in others they are (and must
be) introduced by the reduction operation in question. It is in this way
that the universes are constructed for the counter-models that are
determined by open tableau branches.

Here are schematic presentations of all the tableau rules for First Order
Predicate Logic with Identity:

( 8 )

( ,T) TRUE FALSE TRUE FALSE ( ,F)
         C      ||                                    ||    C  

     ||  C      C       ||

(v,T) TRUE FALSE TRUE FALSE (v,F)

         C v D  ||                                     ||    C v D 
         C  |  D   C

     D

( ,T) TRUE FALSE TRUE FALSE 
( ,F)

         C  D   ||                                   ||    C  D 
            |  D       C  |       C     D
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( ,T) TRUE FALSE ( ,F) TRUE FALSE

         C  D   ||                                           ||    C  D 
          C  |           |  C    C  |  D      D  |  C

 D   D

( ,T) TRUE FALSE TRUE FALSE    ( ,F)

( vi) A ( vi) A
_______ || _____ _______ | |_______
A(t /vi)   A(c/vi)

(t an arbitraryclosed term) (c a new parameter)

( ,T) TRUE FALSE    ( ,F) TRUE FALSE

( vi) A ( vi) A
       _______ || _____ ______ ||  _______

 A(c/vi) A(t /vi)
 

(c a new parameter)   (t an arbitraryclosed term)
        

(=,Sub) TRUE FALSE       TRUE   FALSE

s = t  s = t
  A     A

       _______ || _____ ______ ||  _______
  A'     A'

(s, t arbitrary closed terms; A is an atomic formula and A' is the result
of properly substituting t for one occurrence of s in A).

(=, Ref) TRUE  FALSE 
_______ || _____
  t = t               (t an arbitrary closed term)

Although familiarity with the Tableau Method is assumed, it may be
helpful to present a couple of tableau constructions as examples. This
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will also help us to focus more sharply on the tasks that lie ahead.  The
tableau constructions we will consider are those for the two arguments
that we get by taking as premise and conclusion the standard
formalisations in First Order Logic of the two possible scope readings of
a sentence like (2)

( 2 ) Some book about semantics has been read by every student.

Abbreviating 'student' as P, 'book' as Q and 'y has been read by x' as
R(x,y), we get as formalisations for the two readings:

( 3 ) i. ( x)(P(x)  ( y)(Q(y) & R(x,y)))
ii. ( y)(Q(y) & ( x)(P(x)  R(x,y)))

Thus the two arguments are:

(4)  i . <  ( y)(Q(y) & ( x)(P(x)   R(x,y))) |
( x)(P(x)  ( y)(Q(y) & R(x,y))) >

ii. < ( x)(P(x)  ( y)(Q(y) & R(x,y))) |
( y)(Q(y) & ( x)(P(x)  R(x,y))) >

Of these (4.i) is valid and (4.ii) is not.  The following two tableaus show
this.
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( 5 ) (Tableau for (4.i))

TRUE || FALSE

 ( y)(Q(y) & ( x)(P(x)  R(x,y)))    ( x)(P(x) ( y)(Q(y) & R(x,y)))

   Q(a) & ( x)(P(x)  R(x,a))
   Q(a)
   ( x)(P(x)  R(x,a))     P(b) ( y)(Q(y) & R(b, y))
    P(b)    ( y)(Q(y) & R(b,y))

 Q(a) & R(b,a)

           |        |
           |        |
       |      Q ( a )        | R(b,a)
=========== |  ||===============|

        P(b) R(b,a))     ||
         ||

     |           |  R(b,a)        |   P(b)    |
     |====== |========||        |=======|=====

Since this tableau closes, we conclude that (4,i) is valid.

( 6 ) (Tableau for (4.ii))

TRUE FALSE

  ( x)(P(x) ( y)(Q(y) & R(x,y)))      ( y)(Q(y) & ( x)(P(x)  R(x,y)))

     P(b) ( y)(Q(y) & R(b,y))
               | ( y)(Q(y) & ||         P(b)                  |
               |        R(b,y)) ||       |

      |  ||   Q(b) &  ( x)(P(x)    |
                                       |                            ||                         R(x,b))     |     

    |       |  ||    Q(b)    | ( x)(P(x)   |
    |       |  ||          |       R(x,b))     |
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The leftmost branch of this tableau is open.  It determines the
extremely simple counter-model defined in (7) and thereby shows that
the argument is invalid.

( 7 ) (Countermodel to (4.ii))

UM = {b}
PM =    
QM =   
RM =   

(6) is an example of a tableau with a finite open branch in which no
further reductions are possible. Besides such tableaux and tableaux in
which all branches close there are also those in which there are open
branches, but which have no finite open branches without further
reduction possibilities. It is these tableaux that are responsible for the
fact that the semantic tableau method is not a decision method for
validity. (Which is as it should be, since we know that there cannot be
such a decision method).

Tableaux with branches that do not close but which offer reduction
option at all finite stages of their construction are very common.
Perhaps the simplest example of such a tableau is that for the argument
<( x)( y)R(x,y), >. This tableau has no splittings, and its one branch
never closes lalhough its construction can be continued indefinitely.
The first stages of its construction are given in (8).

( 8 ) TRUE FALSE

( x)( y)R(x,y)            ||
   ( y)R(a,y) ||

         R(a,b) ||
   ( y)R(b,y) ||
     R(b,c) ||
   ( y)R(c,y) ||

. ||
         . ||

It is plain how this tableau construction will continue and equally plain
that a closure is not in the making. But in general things are not so
straightforward. Indeed, it follows from the fact that there is no
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decision procedure for validity in first order logic that there can't be an
algorithm that will tell us when we may stop with the construction of a
tableau branch on the grounds that if closure hasn't yet been reached
so far, it won't be achieved at any later stage either.

Exercise.

a . For the formula ( x)( y)R(x,y) we can find finite models (and
thus there are finite countermodels to the argument
< ( x)( y)R(x,y) | >).

Task:  Define a "minimal" model of ( x)( y)R(x,y), i.e. one in
  which the universe has as few elements as possible.

b . However there are also formulas that have models but on ly
infiinite ones.

Task:  Give one such formula and define a model (necessarily with
  infinite universe) in which the formula is true.

In order to be able to provide exact proofs of soundness and
completeness we need a more rigorous definition of semantic tableaux
and their construction than are provided by the semi-formal
descriptions of the Tableau Method which suffice for most purposes
(such as the description given in the syllabus for LFG II).   In the formal
definition of semantic tableaux that we will give below it will be
convenient to mark the distinction between formulas occurring under
TRUE and formulas occurring under FALSE directly on the formulas
themselves. That is, we will define semantic tableaux in such a way that
each tableau branch will be a set of pairs <A,T> and <A,F>, where the
A's are sentences and T and F are used to indicate whether A occurs in
the TRUE or the FALSE column of the given branch.  This means in
particular that a branch is to be considered closed if for some sentence
A both <A,T> and <A,F> belong to it.  We will refer to pairs <A,T> and
<A,F> as positively and negatively signed formulas, respectively, or
simply as signed  formulas.

We also need a formal characterisation of the branching structure of
semantic tableaux. To this end we represent semantic tableaux as trees
(in the mathematical sense of the term), i.e. as sets of nodes that are
connected by a partial order which has the following additional
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properties (which are distinctive of tree orderings).  That is, a tree  is a
strict partial order < such that

(T.i) ( x)( y)(y x x < y),  and
(T.ii) ( x)( y)( z)((y < x & z < x) z < y v z = y v y < z).

In connection with property (T.i), note that it follows from the fact that
a tree is a partially ordered set that there is at most one object in the
universe which satisfies the free variable formula ( y)(y x x < y).
This means that when ( x)( y)(y x x < y) is true, then there is
exactly one such object.  This object is called the root  of the tree.

The nodes of the tree which get created in the course of tableau
construction are to be thought of as representing the stages of tree
branches which are reached each time a reduction operation is applied
to one of the formulas belonging to the given branch.

The trees that arise in the course of tableau construction are thus
special in that any given node has either:

( a ) two successors; this happens when the reduction rule that is
applied to a formula from the set associated with the node 
leads to a pair of reduction products; this is the case
whenever the reduction rule applied is one of (&,R), (v,L),
( ,L), ( ,L) or ( ,R); or

(b) one successor; this happens when the reduction rule that is
applied to a formula belonging to the node leads to a single
reduction product, i.e. through an application of one of the 
remaining rules ((&,l), (v,R), ( ,R), ( ,L), ( ,R), ( ,L), 
( ,R). ( ,L) or ( ,R)); or

(c) no successor; this situation arises when either (i) all
possible formula reductions in the branch to which the node
belongs have been carried out, or else (ii) because the node
represents that stage of its branch Z at which closure of Z is
achieved.

It will be useful to adopt a special mode of representation for the kinds
of trees we will be needing. This mode doesn't cover all tree-like
orderings defined above, but it will cover all those we want, and it has
the advantage that the partial order is exhaustively characterised by the
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internal structure of the nodes.  The nodes of the trees in question are
finite sequences of 0's and 1's. and the ordering relation holds between
two such nodes s and s' if and only if s is a proper initial segment of s'.
We include the empty sequence <> among the possible tree nodes.
Since trees will be defined as non-empty node sets closed under initial
segments, this means that <> will be member of every tree. and it will
always be its root.

In any tree T of the kind described each node s will have either 0, 1 or
2 immediate successors.  s will have two successors in T if both s.0 and
s.1 belong to T and it has no successor in T if neither of these belong
to T.32  In the third case, where s has one successor, it could be that
this successor is either s.0 or s.1, but to make things as tight as
possible we want to exclude the second of these cases. In other words,
the successors of s in T will always be one if the following three sets: / ,
{s.0}, {s.0,s.1}.  We summarise these stipulations in the following
definition.

Def. DA1. (Trees)

A tree T is a pair <T,0 >, where

(a) T is a non-empty set of sequences of 0's and 1' satisfying the
following two conditions:

( i ) if  s.1 & T, then  s.0 & T,
( i i ) if  s.0 & T, then  s & T;

( b ) for any nodes s, s' &  T, s 0 s' iff s is a proper initial segment of s'.3 3

N.B. since the ordering relation of a tree T  = <T,0 > is fully determined
by the internal structure of its nodes, we will henceforth identify T
with its node set T.

The branches of a tree T are its maximal linearly ordered subsets.  For
trees of the kind we are using here this means that if Z is a branch of T
and s and s' are nodes in Z then either s = s' or s is a proper initial
segment of s' or s' is a proper initial segment of s.

3 2 By s. n we understand the concatenation of s and n, i.e. the result of adding
n on to the end of s; so if s is <s1, ..., si>, then  s.n is the sequence <s1, ..., si, n>
3 3 Here it is assumed that every sequence counts as an initial segment of itself.
Thus 0 is reflexive, and thus as weak partial order, as the symbol '0 ' suggests.
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A semantic tableau for an argument <A1,...,An | B>, where the premises
A 1,...,An and the conclusion B are formulas of some first order
language L, is to be thought of as a tree whose nodes are 'decorated'
with the information that makes each node into a stage of a tableau
construction for this argument. We represent this information by
means of a decoration  function .  This is a function which is defined on
the nodes of the tree and maps each node onto the information that is
to be associated with it.34  In particular, our semantic tableaux will be
defined as decorated trees of certain special sort.  More precisely, we
will define a semantic tableau as a decorated tree <T,D> in which the
decorating function D associates with each node s of T information
about which sentences have been included under 'TRUE' at the tableau
construction stage identified by s and which have been included under
'FALSE'.

There is an additional feature of semantic tableaux which a mere
association of sets of 'true' and 'false' sentences with nodes of the tree
may seem to overlook.  This is the set of parameters  which have been
introduced into a tableau branch at any one stage of its construction.
We recall that parameters are individual constants and that the origin
of an individual constant c in a tableau for an argument
<A1,...,An | B> can be of two kinds: either c occurs somewhere in A1,...,
A n or B or else c has been introduced (as a 'parameter') in the course
of the construction of the tableau through the application of reduction
rules applying to quantified formulas.  In general these new parameters
cannot be assumed to belong to the language L of the argument <A1,...,
A n | B>, so their introduction into the tableau means that the tableau,
conceived as a structure involving formulas of some first order
language L, is strictly speaking no longer a tableau for the language L
but rather for some extension L' of L, which is obtained by adding new
individual constants to L. In keeping with this observation we assume
that before the construction of the tableau for an argument <A1,..., An |
B>, with premises and conclusion belonging to L, is started, L is
extended with an infinite sequence c1, c2, .. of new constants.  From
this set the parameters that are needed in course of the tableau
construction will then be drawn.

3 4 Combinations consisting of some abstract mathematical support structure S
and a function which assigns certain items to each of the elements of S are often
referred to as decorated structures. Decorated trees are a special case of decorated
structures in general, but it seems that they are the kind that is used most often.
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Strictly speaking the set of constants that have been introduced at the
point of tableau construction identified by a tree node s can be
recovered from the formulas associated with s by the decoration
function. For these constants are just the ones which have occurrences
in those formulas. However, it will be convenient to define the tableau
construction process in such a way that the set of constants that have
been introduced at any stage in any branch is explicitly available and
directly accessible.

We need access to the information what constants have already been
introduced before a certain stage s of the tableau construction
whenever the sentence that is up for reduction at s is either of the form
(!x)E(x) and occurring under TRUE or of the form ("x)E(x) and
occurring under FALSE.  Reduction of such a formula is required iff
there is a constant c that has been introduced at some stage before s
with which the formula has not been instantiated before. (That is, E(c)
has not yet been added to the TRUE c.q. FALSE column.) Having the
sequence of previously introduced constants as a separate item in the
decoration of s makes it easier to state whether and how reduction of
such a formula is to be executed at s.

There is also another piece of information that we need in order to
make the right decisions with regard to such formulas. It could be the
case that the formula has in fact been previously instantiated with a
given constant c, but that the formula E(c) to which this instantiation
led is no longer available at s as a witness to this fact.  For E(c) might
itself have been a complex formula and might have been reduced in its
turn at some stage before s.  Therefore it is desirable to keep an
explicit record in some other form of what instantiations have already
been carried out.  The simplest way to do this is to attach to formulas
of the kind at issue besides a feature that tells us under which of the
two columns they occur also the set of constants with which they have
already been instantiated.

This additional piece of information sets the formulas in question apart
from all other cases. In the other cases the column in which the
formula occurs is all the information about their status in the given
tableau branch that we need; for the cases under discussion the set of
instantiated constants is needed as well. This distinction is built into the
following definition of the notion of a signed formula. (The signed
formulas will be the items that go into the decorations of the tree
nodes . )
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Def. DA2.  (of signed formula)

A signed formula of L is either:

( i ) a pair <A,1>, where A is a sentence of L, 1 & {T,F}, and neither of
the following two conditions (a), (b) holds:

( a ) 1  = T and A is of the form (!x)E(x)
( b ) 1  = F and A is of the form ("x)E(x)

o r

( i i ) a triple <A,1 ,S>, where A, 1  are as under (i),
one of the conditions (a), (b) obtains and S is a (possibly empty) 
set of individual constants.

One last point before we come to our formal definition of semantic
tableaux.  We want the construction of semantic tableaux to be fully
deterministic: at every stage the form of the tableau at that stage
should fix unequivocally which reduction, if any, is to be performed
next and how it is to be carried out.  This requires that the (signed)
formulas that are part of the decoration of any stage s are given in
some particular order.  We will assume, moreover, that this is also the
case for the constants that have already been introduced into the
tableau (although here an ordered presentation isn't absolutely
necessary). In other words, the decoration D(s) of a tree node (=
tableau construction stage) s will consist of a pair of two finite
sequences, the first consisting of signed formulas and the second of
individual constants.

For languages with function constants of one or more argument places
tableau construction is complicated by the fact that instantiation of
formulas of the form ( x)E(x) under TRUE and ( x)E(x) under FALSE
may be needed not only for individual constants, but also for the
complex terms that can be built from these constants with the help of
function constants of L of one or more argument places. (For instance,
if c is an individual constant and f a 1-place function constant,
instantiation will in general be required not just with c but also with the
terms f(c), f(f(c)), .. and so on.) To carry through the formalisation of
tableaux and their construction and the proofs of soundness and
completeness based upon that formalisation for languages with
function constants doesn't encounter any fundamental obstacles, but it
presents extra complications which detract from the central points of
the proof.  We will therefore restrict attention to languages L without
function constants of one or more argument places.  The general case,
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in which L may contain such constants, can be reduced to the one we
will consider by translating formulas with such function constants into
formulas with corresponding predicate constants; see Exercise EA2
below.

In fact, we will initially restrict the language L even further, by also
excluding 0-place function constants (i.e. individual constants).  That
is, L won't have any individual constants of its own, and so the only
constants occurring in a semantic tableau for an argument whose
premises and conclusion belong to L will be those introduced in the
course of its construction.  Finally, as our third initial restriction, we
will assume that = occurs neither in the premises nor the conclusion of
the arguments we will consider.  Note that this entails that = won't
occur anywhere in the tableaux for these arguments.

We are now ready for a formal definition of the notion of a semant ic
tableau for an argument <A1,..., An | B>. Note well that what will be
defined is the notion of a completed  tableau, i.e. a tableau in which all
possible reductions have been carried out.  As noted, such tableaux are
very often infinite (i.e. they involve an infinite node set T).

Def. DA3 (Formal characterisation of the notion 'Semantic Tableau for
an argument <A1,..., An | B> in a first order language L)

Let L be a language of First Order Predicate Logic without function
constants, c1 ,c2 ,.. an infinite sequence of individual constants not
belonging to L, and let A1,..., An, B be sentences of L in which = does
not occur.
A (completed) semantic tableau for the argument <A1,..., An | B> given
the sequence c1,c2,.. is a pair <T,D>, where

( i ) T is a tree as defined in Def. DA1 and
( i i ) D is a function defined on T which assigns to each node s &  T a

pair D(s) consisting of

(a) a finite sequence of signed formulas (see Def. DA2), and
(b) a finite sequence of constants from the sequence c1 , c2 ,. .

(iii) T and D satisfy the conditions specified below.

Before we set about describing these conditions, first a notational
convention.  For any node s of T we refer to the first component of the
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pair D(s) (the sequence of signed formulas) as 'D(s)F ' and to the
second component (the sequence of individual constants) as 'D(s)C '.3 5

The conditions alluded to under (iii) recapitulate, in strictly formal and
strictly deterministic terms, the construction of the tableau from its
starting point, when the column TRUE consists just of the premises only
the premises A1,..., An and the column FALSE just of the conclusion B.

Our first condition concerns this starting point; it specifies the
decoration of the root <>. But before we can state it in the form in
which it will be most useful later on, there is one further aspect of
tableau construction that we must make explicit. As our examples
illustrate, there are in essence two reduction rules for quantified
formulas. Reduction of existential formulas under TRUE and universal
formulas under FALSE requires replacement of the variable that is
bound by the quantifier by a new constant, which does not yet occur in
the tableau that is being constructed; and such reductions have to be
performed only once. Reductions of existential formulas under FALSE
and universal formulas under TRUE, on the other hand, involve
constants that have been introduced already. These are reductions that
have to be repeated again and again to the same formula, in order to
make sure that all constants occurring in the tableau branch to which a
given quanified formula belongs are substituted for the bound variable
of its outer quantifier eventually.

But there is one exception to the principle that quantified formulas of
the second category are only instantiated with constants that have been
previously introduced. This is when tableau construction has to be got
under way somehow and the only reductions that are possible involve
formulas of just this kind. Of the three tableaux that were shown above
the second and third are both examples of this. In such cases there is
nothing for it but to instantiate one of the quantified formulas with
some constant or other, which makes its entry into the tableau in this
way. In each tableau such a step needs to be performed at most once.
For once one such rule application has occurred and the constant
involved in the application has been thereby introduced into the given
tableau branch, then from then on tableau construction can proceed in

3 5 It should be noted that both sequences may in principle be empty.  In fact,
given the restrictions on L we have adopted here, D(<>)C will always be empty;
D(<>)F would be empty only when the argument had neither premises nor
conclusion.  (This, however, is a purely theoretical possibility without any
intuitive interest.) It is standard to think of an argument as involving at least a
conclusion, even if the premise set of an argument may sometimes be empty.
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accordance with the principle that quantifiers of the first kind are
instantiated (once) with new constants and quantifiers of the second
kind with all and only the previously introduced ones.3 6

It would be possible but awkward if we had to make special provisions
for the possibility that tableau constructions may have to start in this
particular way. But it is easy to set things up in such a way tzhat no
special provisions are needed. It suffices to add one constant to the
tableau at the very start of its construction, irrespective of whte form
of hte argument for which the tableau is being constructed. Doing this
is yet another way of saying that no matter what the (counter) model
we are trying to find by constructing the tableau will be like, it will have
at least one element (viz. the denotation of this constant) in its
universe. As regards the constant we choose for this special role, the
most natural choice would seem to be the first constant c1 from our
list; so that is the one we choose.

For the decoration of the root of the tableau this means that the
sequence of already introduced constants is not the empty sequence,
but the one element sequence <c1> .

With this last bit of informal explanation out of the way we are ready
for the exact specification of the decoration of the root .

Croot D(<>) = <<#1,..., #n, 2>, <c1>>,
where #1,..., #n are signed formulas which establish the
premises A1,..., An as occurring in the TRUE column and 2 i s
a signed formula establishing B as occurring in the FALSE
column.

N.B. that #1,..., #n are signed formulas which establish the

3 6 We recall that the justification for this way of starting tableau
constructions is the assumption of classical logic that the universe of discourse is
never empty (and thus that models never have empty universes). This means that
for instance a universally quantified statement will never be true vacuously, that
is,  simply because there is nothing at all in the model in which it gets
interpreted. Since this possibility of vacuoous truth is excluded in the model
theory for classical first order logic, it is always legitimate to instantiate the
quantifier of such a statement to a new constant, with which no information about
its referent is as yet connected. Instantiating the quantifier in this way is nothing
more than making explicit that if the statement is true at all, then there will be at
least one thing of which its scope (i.e. the formula to which the quantifier is
attached) will be true. The non-empty universe assumption netails that this
procedure is sound..
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premises A1,..., An as occurring in the TRUE column is to be
understood as follows:  If Ai begins with a universal quantifier, then # i
has the form <Ai,T,/>; otherwise # i has the form <Ai,T>.  Analogously,
2 is a signed formula establishing B as occurring under FALSE.  That is, 2
has the form <B,F,/>, if B begins with an existential quantifier and
otherwise is equal to <B,F>.

The next two conditions concern the end nodes (or 'leaves') of T.
These are the stages s at which either (i) no further formula reductions
are needed or (ii) all possible reductions have already been carried out.
Case (i) arises when a contradiction (= closure) has been reached in the
transition to s.  That is, the same formula A occurs in D(s)F  both with
the sign T and with the sign F.  Given the particular way in which we
formalise semantic tableaux here, case (ii), where all possible
reductions have been carried out already, manifests itself as follows.
As will be described in detail below, all reducible formulas are removed
from the decoration when they are reduced except for universally
quantified formulas occurring under TRUE and existentially quantified
formulas under FALSE.  Whether a signed formula of this kind is a
candidate for reduction at stage s depends on whether the sequence
D(s)C contains constants that do not occur in the set S that the signed
formula contains as its third component.  Formally the condition about
end nodes can be stated as follows:

Cleaf s &  T is an end node of T (in other words, s.0 is not a
member of T) iff one the following two conditions (a), (b) is
satisfied:

( a ) (closure at s)
D(s)F contains signed formulas # i and # j which involve
the same formula A but the opposite signs T and F,
respectively.

( b ) (no further reductions possible)
The only signed formulas in D(s)F which involve non-
atomic formulas are either of the form <( x)E(x),T,S>
or of the form <( x)E(x),F,S>, where in each case S
contains all the constants occurring in D(s)C .

The remaining conditions concern the relations between the
decorations of mother nodes and their daughters.  In these cases s is
not closed and D(s)F contains at least one signed formula that is a
candidate for reduction. The reduction that is performed will then
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concern the first such signed formula in D(s)F .  The nature of the
reduction depends on what kind of signed formula this is, and the
precise description of the way in which it is reduced depends on the
form of D(s) and relates D(s) to the decorations of the one or two
daughters of s.  There are as many cases to be distinguished here as
there are tableau construction rules (see pp. 93, 94). Strictly speaking
it would be necessary to go through each one of those cases separately.
We will proceed selectively, however, and leave the majority of the
cases as exercises.

We first consider those reductions which lead to a split of the given
tableau branch.  That is, in these cases s has two daughters, s.0 and
s.1.  Reductions of this kind arise when the signed formula that is to be
reduced has one of the following forms: <CvD,T>, <C&D,F>, <C D,T>,
<C D,T> or <C D,F>.  We consider only the first of these possibilities,
<CvD,T>.   In this case the decorations of the successor nodes s.0 and
s.1 are obtained by eliminating <CvD,T> from D(s)F and adding at the
end of that sequence a signed formula 3  containing C in the case of s.0
and a signed formula 4 containing D in the case of s.1.  3 is defined as
follows: 3 = <C,T> in case C does not begin with a universal quantifier,
and  = <C,T,/ > if C does. Likewise for 4. Thus the decorations D(s.0 )
and D(s.1) can be defined as follows:

C(v,T) Suppose the member # i of D(s)F that is up for reduction
has the form <CvD,T>. Then s has the successors s.0 and s
s.1 in T, whose decorations are determined as follows:

D(s.0) = <<#1, .., # i-1, # i+1, .., #n, 3>, D(s)C> ,
D(s.1) = <<#1, .., # i-1, # i+1, .., #n, 4>, D(s)C> ,
where 3, 4  are as defined above,.

We now turn to the reductions which do not produce a split.  Here we
distinguish between three major cases:

(i) the main operator of the reduced formula is a sentential
connective:

(ii) the reduced formula either begins with an existential quantifier
and occurs under TRUE or begins with a universal quantifier and
occurs under FALSE;

(iii) the reduced formula either begins with an existential quantifier
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and occurs under FALSE or begins with a universal quantifier and
occurs under TRUE.

Case (i).  In this case the signed formula that is up for reduction is of
one of the following forms: < C,T>, < C,F>, <C&D,T>, <CvD,F>,
<C D,F>.  This time we only consider the conjunction case.  The only
difference with condition C(v,T) is that now we have just one successor
and both constituents of the reduced formula are added on to the end
of the formula decoration of that successor.

C(&,T) Suppose the member # i of D(s)F that is up for reduction
has the form <C&D,T>. Then s has one successor, s.0, in T,
whose decoration is determined as follows:

D(s.0) = <<#1, .., # i-1, # i+1, .., #n, 3, 4>, D(s)C> ,

where 3 and 4  are as defined as in the case of C(v,T).

Case (ii). In cases of this kind reduction involves the introduction of a
new parameter c into the given tableau branch. We choose for this
parameter the first constant in our fixed sequence c1 , c2 ,.. that does
not occur in D(s)C . We only consider the subcase where the member of
D(s)F that is up for reduction has the form <( x)E(x),T>.

C( ,T) Suppose the member # i of D(s)F that is up for reduction
has the form <( x)E(x),T>. Then s has one successor, s.0, in
T.  The decoration of s.0 is given by

D(s.0) = <<#1, .., # i-1, # i+1, .., #n, &>, D(s)C .c>;

here & = <E(c),T,/> if E begins with a universal quantifier
and & = <E(c),T> otherwise.

(Note that this is the one rule application in which D(s)C
gets extended.)

Case (iii).  This case differs from all others in that the reduced formula
is not eliminated from D(s)F  but 'recycled' by being added to the end of
D(s)F .  Also a special check is needed in this case to see whether the
formula should be reduced at stage s, and which parameter should be
involved in its instantiation.  Since we have discussed this issue in
considerable detail above, we proceed with the formal specification of
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the relevant condition right away.  We only consider the case where the
signed formula that is up for reduction is of the form <( x)E(x),T,S>.

C( ,T) Suppose the member # i  of D(s)F that is up for reduction
has the form <( x)E(x),T,S>, that D(s)C contains at east one
member that does not belong to S and that c is the first
constant in D(s)C with this property. Then s has one
successor, s.0, in T and the decoration of s.0 is given by

    D(s.0) = <<#1,., #i-1, #i+1,., #n, &, <( x)E(x),T,S {c}>>,D(s)C>;

again & is equal to <E(c),T,/> if E begins with a universal
quantifier and equal to <E(c),T> otherwise.

This completes the list of conditions that any semantic tableaus must
meet and therewith Def. DA3.3 7

It is useful to see at least for one example what a tableau construction
according to the specifications of Def. DA3 looks like.  Hence the
following exercise:

Exercise EA1.   Construct a tableau in accordance with the specifications
of Def. DA3 for the argument

<( y)(Q(y) & ( x)(P(x)   R(x,y))) | ( x)(P(x)  ( y)(Q(y) & R(x,y)))>

Having given a precise formal reconstruction of semantic tableaux and
their construction, we can now proceed to prove, on the basis of our
formalisation, the properties of semantic tableaux which jointly
establish soundness and completeness of the Tableau Method.  As a
preliminary we prove a lemma about infinite trees of the kind we are
using.

3 7 As described, the procedure for construc ting semantic tableaux is still not
fully deterministic. Usually a tableay leads to splittings, and as soon as the tableau
that is being constructed has more gthan one branch, there is the question in
which bramch the next reduction is to be performed.  This is a question that the
tableaqu construction algorithm we have outlined doesn't address. (It is
detreministic onlky with regard to the order of reductions within a ny given
branch.) It is straightforward to turn the given algorithm into oe which also
decides in a fully deterministic way which is to be the next branch in which a
reduction step  is to be carrie out. But to do so explicitly is yet another burden on
notation, so  have decided to let this matter rest. The reader can modify the given
algorithm so that it is deterministic also in this respect if he or she feels the urge.
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Lemma LA1. Every infinite tableau has at least one infinite branch.

Proof.  Let T be a tree in the sense of Def. DA1.  It is easy to see that the
nodes of T can be distinguished into three categories: (i) nodes s such
that there are only finitely many successors of s in T; (ii) nodes s whose
successor s.0 has infinitely many successors in T; and (iii) nodes s such
that s.0 has only finitely many successors in T but s.1 has infinitely
many successors in T.

We make use of this tripartite division in defining the following
function f on T:  For s & T, f(s) is specified as follows:

    in case (i) (s has finitely many successors in T)

f(s) =    s.0 in case (ii) (s.0 has infinitely many successors in T)

    s.1 in case (iii) (s.1 has infinitely many successors in T
while .0 has finitely many successors in T)

Since T has infinitely many nodes, its root <> will have infinitely many
successors.  Moreover, if s is a node which has infinitely many
successors, then f(s) will have infinitely many successors as well.  This
means that if we define the function g on the natural numbers 0, 1, 2, ..
as in (1) below, then it will be the case that for each n g(n) is a node of
T which has infinitely many successors in T:

( 1 ) ( a ) g(0) = <>
(b) for all natural numbers n, g(n+1) = f(g(n))

It is evident that the range of g is an infinite sequence of nodes of t
such that for each n g(n) is an initial segment of g(n+1).  From this it
follows immediately that if n and m are any natural numbers such that
n < m, then g(n) is an initial segment of g(m).  So the range of g is a
linearly ordered subset of T, and, given that g is defined for all n, it is
infinite.  In fact, the set is a branch of T, since for each n the length of
the sequence g(n) is n. So it is impossible to extend the set with an
element s of T which does not yet belong to it without losing linearity.
For s will of necessity be of some finite length n and so of the same
length as the node g(n).  It is clear, however, that for any two distinct
sequences s1  and s2  of the same length neither is an initial segment of
the other, i. e. we have neither s 0 s' nor s' 0 s. So no proper extension
of Ran(g) with a further element of T will be a linear order.  Hence
Ran(g) is a maximal linear subset of T and thus a branch of T.
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q.e.d.

N.B. The property which Lemma LA1 establishes for trees with at most
binary branching - i.e. trees in which each node has at most two
daughters - is a special case of a more general statement:

Every infinite tree in which each node has finitely many daughters
has an infinite branch.

Exercise:   Show that any infinite tableau has an infinite branch.

For the remainder of this Appendix it will be convenient to introduce
the following terminology.  Suppose that <T,D> is a semantic tableau
and that s is one of its stages (i.e. s &  T).  We say that the formula A
occurs positively at s iff A is the formula of a signed formula occurring
in D(s)F whose sign is T.  (That is, the signed formula is of the form
<A,T,S> when A begins with a universal quantifier and in all other cases
it equals <A,T>.)
Similarly, A occurs negatively at s iff A is part of a signed formula
occurring in D(s)F whose sign is F.

Def. DA4

1 . Suppose that <T,D> is a semantic tableau and Z a branch of T.
Then we say that Z is closed  iff there is a node s & Z and an atomic
sentence A which occurs both positively and negatively at s.

2 . A semantic tableau <T,D> is closed  iff every branch of it is closed.

Lemma LA2. Suppose that <T,D> is a semantic tableau and that Z is
an infinite branch of T.  Then Z is not closed.

Proof.  This is immediate.  Supppose that Z was closed.  Then there
would be an atomic formula A and a node s of Z such that <A,T> and
<A,F> belong to D(s)F.  But in that case s would have no successors.
(See (1) of Def. DA2.)  So Z would be finite.

Corollary.  If the semantic tableau <T,D> is closed, then T is finite.

Theorem TA1. (Soundness of the Tableau Method)

Suppose that the semantic tableau <T,D> for the argument
<A1,..., An | B> is closed.  Then <A1,..., An | B> is valid.
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Proof. Assume <T,D> is closed.  From the Corollary it follows that T
is finite.  This entails that every branch of T consists of a finite set of
nodes <s1, .., sk> .

We have to show that A1,..., An  B, i.e. that every model for the
language L of <A1,..., An | B> which verifies the premises A1,..., An also
verifies the conclusion B.  Suppose that this is not so.  Then there is a
model M for L which verifies the premises but falsifies the conclusion.

We will construct a branch <so,.., sk> of nodes of T and a sequence
< M o,.., Mk> of models where each pair (si,Mi) (i = 1,.., k) has the
following three properties:

(P1) M i is a model for the language Li = L  D(si)C.

(P2) If A occurs positively in D(si)F, then Mi A .

(P3) If A occurs negatively in D(si)F, then not Mi A .

N.B. the models Mi will all be expansions of the model M, i.e. they have
the same universe U as M and the same interpretations for the non-
logical constants of L. They differ from M only in providing denotations
in U for the individual constants in the sets Ci.  For the notion of 'model
expansion' see Section 1.5 of this Chapter.

It should be clear that the combination of P1 - P3 leads to a
contradiction.  For it entails that P2 and P3 hold in particular for the
final node sk of the branch. But since sk has no successors in T and its
branch is closed, it must be the case that some sentence A occurs both
positively and negatively at s.  By P2 and P3 we then have that both Mk

A and not Mk A.

The construction of the pairs (si,Mi) proceeds by induction.  For the
basic step, which concerns the root node so , recall that D(so) = D(<>)
= < <#1,.., <#n, 2>, <c1> >, where # i is a signed formula with positive
sign which contains premise Ai and 2 is a signed formula with negative
sign which contains the conclusion B. In other words, the Ai occur
positively at <> and B negatively. Further, since D(so)C  is the sequence
<c1>, we have that Lo = L {c1}, A model Mo for this language can be
obtained from M by extending the interpretation function FM  of M to
c1. Since c1 doesn't occur in either the Ai or B, it is immaterial how the



1 4 3

interpetation of c1 is chosen. That is, we can arbitrarily pick an
element u of UM  and extend to the function FM o = FM  {<c1,u>}. If we
then put: Mo = < UM , FM o >, then clearly Mo |= A1,.., An and not
Mo |= B.

Now suppose that si and Mi have been chosen, that (si,Mi) has the
properties P1-P3 and that si has at least one successor in T.  Then the
one or two successors of si are the result of reducing one of the signed
formulas in D(si)F .  The choice of si+1 and Mi+1 and the proof that
they satisfy P1-P3 depends on what kind of reduction is involved.

We first consider those reductions which lead to one successor of si.
And as regards these reductions, we begin by looking at the ones where
the main operator of the reduced formula is a sentence connective.
These are the cases where the signed formula to which the reduction
applies has one of the following forms: < C,T>, < C,F>, <C&D,T>,
<CvD,F> or <C D,F>. Once again we consider just one of these cases,
and as before we focus on that of a conjunction occurring under TRUE,
i.e. <C&D,T>.

Suppose then that the transition from s to its immediate successor s.0
is the result of reducing the signed formula <C&D,T> belonging to
D(si)F . Since the reduction does not involve the introduction of a new
parameter, we have in this case that D(si+1)C  is the same as D(si)C .  So
Li+1 = Li.  This means that we can take Mi+1 to be the same as Mi.  So,
since by assumption Mi satisfies P1, this will then also be the case for
M i+1. To verify P2 and P3 we need to show that the signed formulas in
D(si+1)F are true or false in Mi+1 depending on whether their sign is T
or F.  For those signed formulas of D(si+1)F that also belong to D(si)F
this follows from the assumptions made about si and Mi.  So the only
signed formulas for which P2 and P3 have to be checked are those that
have been added to D(si+1)F  in the transition from si to si+1.  In the
case at hand these are the positively signed formulas containing C and
D.  But since <C&D,T> belongs to D(si)F it follows by the induction
assumption (more specifically, the assumption that P2 holds for si and
M i) that Mi  C & D.  So by the clause for & in the Truth Definition,
M i  C and Mi  D.  Since Mi+1 = Mi, the desired result follows.

Next, we consider cases where si leads to si+1 through the reduction of
a quantified formula.  First suppose that the reduction involves a
parameter that already belongs to D(si)C .  In this case the signed



1 4 4

formula to which the reduction applies is either of the form
<( x)E(x),T,S> or of the form <( x)E(x),F,S>.  We focus on the first
possibility.  Once more the immediate successor si+1 is si.0.  This
entails that D(si+1)C  is identical to D(si)C , so that once more Mi+1 =
M i.  Suppose further that the reduction of ( x)E(x) consists in
substituting for the free occurrences of x in E(x) the constant cr from
the list of parameters provided by D(si)C .  Thus the only signed
formula in D(si+1)F which does not belong to D(si)F is <E[cr/x],T>.  So
it is only necessary to verify P2 for this signed formula.  By assumption
M i  ( x)E(x).  This means that [[( x)E(x)]]M i,a  = 1 for all assignments
a in Mi, including in particular those assignments a such that a(x) =
Fi(cr) (which in turn is equal to [[cr]]M i,a ). So by the clause of the
Truth Definition for the universal quantifier it follows that [[E(x)]]M i,a
= 1, where a  is any assignment in M such that a(x) = [[cr]]M i.  And
from this it follows by the Corollary to Lemma 238 that [[E[cr/x]]]M i,a  =
1.  Since E[cr/x] is a sentence, this amounts to the same thing as:
M i  E[cr/x]. This concludes the case under consideration.

Now consider those reductions of quantified formulas which involve
the introduction of a new parameter into the tableau branch.  These are
the cases where the signed formula that is reduced is either of the form
<( x)E(x),T> or of the form <( x)E(x),F>. We focus on the first of
these .

Again we put si+1 = si.0. Suppose that the new parameter is ck. Then
D(si+1)C consists of D(si)C  together with ck.  This means that Li+1 =
Li {ck}, so this time Mi+1 will have to be a proper expansion of Mi.
Since <( x)E(x),T> occurs in the first member of D(si), by induction
assumption Mi  ( x)E(x).  So there is an element d in the universe U of
M i such that [[E(x)]]M i,a  = 1 where a  is any assignment such that a(x) =
d.  This means that we can make sure that (si+1,Mi+1) satisfy P1-P3 by
defining Mi+1 to be that model for Li+1 which is like Mi as far as Li i s
concerned and in addition interprets ck  as denoting d.  (That is, Fi+1(# )
= Fi(# ) for every non-logical constant # of L, and Fi+1(ck) = d.) For then
we have that [[E(x)]]M i+1,a  = 1, provided a(x) = [[(ck]]M i+1.  So, again
by the Corollary to Lemma 2, Mi+1  E[ck/x], which concludes the
argument for this case.

3 8 See Section 1.1 of this Chapter.
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This concludes the argument for all reductions which lead to a single
successor.  Now we consider those reductions which produce two
successors.  These are all reductions of formulas whose main operator
is a sentence connective.  To be precise, the types of signed formulas
which lead to pairs of successor nodes are, as may be recalled from
Def.DA2, <CvD,T>, <C&D,F>, <C D,T>, <C D,T> and <C D,F>.  Once
more we focus on the first of these.

Since we are dealing with a reduction in which no new parameter is
introduced, we have, as in earlier cases of this kind, that Mi+1 = Mi.
But this time the choice that matters is that of the successor si+1 to si.
We know from the induction assumption that Mi  C v D.  This entails
(by the Truth Definition clause for v) that either Mi  C or Mi  D.
Suppose that the first of these is true.  Then we choose si+1 to be si.0 .
The first member of D(si+1) = D(si.0) differs from the first member of
D(si) only in having the additional signed formula <C,T>39.  But by
assumption Mi  C.  So, since Mi+1 = Mi, Mi+1  C. If it is not the case
that Mi  C, then Mi  D. In this case we choose si+1 to be si.1 .
Otherwise the reasoning is just as in the first case.

It should be stressed that since the entire tree T is finite (see the
Corollary to Lemma LA2), there is a finite upper bound n to the possible
length of the branch we are constructing.  So after at the very most n
steps the end node of this branch will be reached and with it the
contradiction we have been aiming for.

This concludes the argument for our last case, and with it the proof of
Theorem TA1. q.e .d.

Theorem TA2.  (Completeness of the Tableau Method)

Suppose that the semantic tableau for the argument <A1,..., An | B> is
not closed.  Then <A1,..., An | B> is not valid.

Proof.  Suppose that the premises and conclusion of <A1,..., An | B>
belong to the language L and that the tableau <T,D> for <A1,..., An | B>
is not closed.  Then <T,D> has an open branch Z.  Let C(Z) be the set of
all individual constants c such that there is a node s in Z with c

3 9 Or <C,T,/> in case C begins with a universal quantifier. This qualification
will be needed also in a number of further cases below. Since it should by now be
clear when such cases arise, we will henceforth forgo drawing explicit attention
to this qualification.
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occurring in D(s)C and let L' be the language L C(Z).  Furthermore, let
PF(Z) be the set of those sentences of L' which occur positively at some
stage of Z and let NF(Z) be the set of those sentencs which occur
negatively at some stage of Z.   We prove Th. TA2 by constructing a
model M for L' in which the members of PF(Z) are all true and the
members of NF(Z) are all false.  This will entail that in particular the
signed formulas that occur in D(<>) are true or false in M according to
whether their sign is T or F.  So the premises A1,..., An  are true in M
and the conclusion B is false in M, which proves that <A1,..., An | B> is
invalid.

M is defined as follows

( i ) The universe UM  of M is the set C(Z).

(ii) Let P be an n-place predicate of L. Then the interpretation FM (P)
of P in M is defined to be the following function from the
Cartesian product Un (= U ..(n times).. U) into the set {0,1}:4 0

FM (P)(c1, ..,cn) = 1 iff P(c1, ..,cn) & PF(Z)

(iii) c is a constant from C(Z).  Then FM (c) = c.  (That is, we let c
denote itself.)

To prove that M verifies the sentences in PF(Z) and falsifies the
sentences in NF(Z) we proceed by induction on the syntactic complexity
of formulas.

To show the base case, suppose first that the atomic sentence
P(c1,..,cn) belongs to PF(Z).  Then, by the definition of FM ,
FM (P)(c1, .., cn) = 1. So by the Truth Definition, M P(c1, .., cn).  Now
suppose that P(c1, ..,cn) &  NF(Z).  Then it is not the case that P(c1, .., cn)
&  PF(Z); for if this were the case, then there would be a node s of Z such
that <P(c1, .., cn),T> and <P(c1, .., cn),F> both occur in D(s)F, and then
s would have been the final node of Z and Z would have been closed.
So, by the definition of FM , FM (P)(c1, .., cn) = 0, and so it follows from
the Truth Definition that it is not the case that M P(c1, .., cn) .

Second, assume that A is a complex sentence, that the induction
assumption holds for all sentences of smaller complexity and that the
main operator of A is a sentence connective.  We only consider one

4 0 As usual, U1 = U.
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case, that where A is of the form C & D.  We assume that the induction
hypothesis holds for C and for D.

First suppose that A & PF(Z).  Then there must be some node s in Z such
that A occurs positively at s and the signed formula containing A that
belongs to D(s)F  has been reduced in the transition from s to its
(unique) successor s.0.  (That there must be such an s follows from
the fact that there is by definition of PF(Z) some s' in Z such that <A,T>
belongs to D(s')F .  Since D(s')F  is a finite sequence, and since with each
reduction of an element of the sequence the signed formula containing
A moves closer to a position in the sequence where it will be the
formula up for reduction, its reduction is bound to take place either at
s' itself or at some successor of s'.  Note also in this connection that
universal formulas under TRUE and existential formulas will be reduced
at least once.)  This means that D(s.0)F contains both <C,T> and
<D,T>.  From the induction assumption it then follows that M C and
M D.  So by the clause for & of the Truth Definition, M C & D.

Now suppose that A & NF(Z).  Then for some node s' in Z A occurs
negatively at s'.  As above, we infer that there must be a node s in Z
such that a negatively signed formula containing A is reduced at s.  In
this case the reduction has led to two successors s.0 and s.1 of s, with
<C,F> occurring in D(s.0)F and <D,F> occurring in D(s.1)F.  One of
these successor nodes must belong to Z, for otherwise Z would not be a
maximal linearly ordered subset of T and thus wouldn't be a branch.
Let us assume that s.0 belongs to Z.  Then we may conclude from the
induction assumption that it is not the case that M C.  But then it also
won't be the case that M C & D.

The remaining cases are sentences beginning with a quantifier.  We will
only consider the case of the existential quantifier. Suppose that A has
the form ( x)E(x).  Once again we begin with the case where A belongs
to PF(Z).  This means that for some s' in Z <( x)E(x),T> occurs in D(s')F.
As before we may conclude that there is a node s in Z such that s s '
and <( x)E(x),T> is reduced in the transition from s to s.0.  In this case
a new parameter ck  is introduced into Z and the signed formula
<E[ck/x],T> belongs to D(s.0)F.  From the induction assumption it
follows that M E[ck/x] and from this by the Truth Definition that
M ( x)E(x), i.e. M A.
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The final case to be dealt with is that where ( x)E(x) & NF(Z). In this
case there is a node s' in Z such that a signed formula <( x)E,F,S> is a
member of D(s')F . As we have seen, reductions of signed formulas of
this kind do not result in elimination of the signed formula to which the
reduction applies; instead the formula is put at the end of D(s.0)F  each
time that the formula is subjected to reduction in the transition from
some node s in B to s.0.  In fact, given the way in which we have
defined the procedure for treating signed formulas of this type and
putting them back in the queue, it is easy to verify that for each c in the
parameter set C(Z) there will be a transition from some node s in Z to
its successor s.0, in which c has been used to instantiate the quantifier
( x) in <( x)E(x), F>, with the effect that <E[c/x],F> has been added to
D(s.0)F;.  Thus E[c/x] & NF(Z).  Therefore we can infer, using the
induction assumption, that for each c &  C(Z) it is not the case that M 
E[c/x].  Since C(z) = UM , and for each c & C(Z), FM (c) = c it follows
from the Corollary to Lemma 2 and the clause for of the Truth
Definition that it is not the case that M ( x)E(x).  In other words, it is
not the case that M A .

This concludes the proof of our last case, and therewith of Theorem
TA2.

q.e .d.

Arguments with identity.

So far we have proved soundness and completeness under the
assumption that = does not occur in <A1,..., An | B>.  We now drop this
assumption. This means that the tableau for <A1,..., An | B> will in
genral contain atomic formulas of the form 'ci = cj'. When the sign of
such a formula is T, then it can give rise to 'reduction' steps involving
applications of the rule (=,Sub). And for such applications there is the
same requirement as for other rules: all possible applications must be
carried out at some stage.  It might be thought that for applications of
(=.Sub) this requirement presents a similar bookkeeping problem as
for universally quantified formulas under TRUE and existentially
quantified firmulas under FALSE, since in both cases the same formula
will typically have to be subjected to repeated applications. (For
instance, the formula P(c1,c2) will have to be subjected to the rule in
combination with each formula under TRUE that is either of the form
'c1 = ci' or of the form 'c2 = ci'.) In the case of the two types of
quantified formulas that give rise to this problem we were forced to
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introduce a special device that keeps track of which instantations have
already been carried out. Fortunately, however, in connection with
(=,Sub) no new notational device is needed. The reason is that we have
restricted the applications of (=,Sub) to atomic formulas. The result of
applying (=,Sub) to an equation  ci = cj and an atomic formula
P(ci1,..,cin) is again an atomic formula and no atomic formula is ever
deleted from a tableau branch once it has become part of it. This
means that whenever a given application of (=,Sub) is being considered,
we can check whether the formula that would result from it already
belongs to the given tableau branch. If that is so, then we do not carry
out the application and pass to the rule application that is next in line.

It is still necessary to agree on a convention which ensures that all
substitution results that can be obtained by applications of (=,Sub) are
obtained, without the risk that other rule applications might remain in
the queue forever. One convention that will do this is as follows: (i)
apply (=,Sub) only when its signed identity premise <ci = cj,T> occurs
as first formula of D(s)F. Then look at the first signed formula <A,T/F>
in D(s)F  such that A has an occurrence of ci. Consider the leftmost
occurrence of ci in A. If the result of applying (=,Sub) to <ci = cj,T> and
A,T/F> already occurs in D(s)F , then pass to the next occurrence of ci
in A. If all results of substituting cj for some occurrence of ci in A
already belong to D(s)F , then pass to the next signed formula in which
there is an occurrence of ci; and so on. When all possible applications
of (=,Sub) with ci = cj as identity premise have been carried out - at any
stage there can of course be only finitely many such applications - then
<ci = cj,T> is moved from the beginning to the end of D(s)F.

There is one further matter connected with the rule (=,Sub) that must
be raised at this point. Intuitively, applications of the rule with identity
premise <ci = cj,T> and second premise <A,T/F> should not only allow
replacements of ci by cj but also replacements of cj by ci. This is not
the way in which we have formulated the rule, however, The reason
why the formulation we have given, according to which an identity
premise <ci = cj,T> only allows for replacements of ci by cj, suffices is
that tableau construction also allows for applications of the rule
(=,Ref). These allow us to introduce signed formulas of the form
<ci = ci,T> whenever we need them. Such formulas can then serve as
non-identity premises in applications of (=,Sub) to lead from
<ci = cj,T> to <cj = ci,T>.

In order to make sure that we get all the instances of <ci = ci,T> that
might ever be needed in our tableau branches we make the following
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provision. Each time a constant ci gets introduced into a tableau branch
at a stage s, we add <ci = ci,T> to the end of D(s.0)F (the formula part
of the decoration of hte unique successor of s).

We are now ready to modify the proofs of the Soundness and
Completeness Theorems so that they also apply to arguments that
contain =. For Soundness this is straightforward. Once again we assume
that the tableau T for the argument <A1,.., An | B> is closed and
suppose that there is a model M for L such that M |= A1,.., An  while not
M |= B. Agaon we prove by induction on n that there is a linearly
ordered subset <so,..,sn> of T, with so = <>, and a sequence of models
<Mo,..,Mn>, where Mi is a model for the language L  D(si)C such that
the positive formulas of si are true in Mi and the negative formulas are
not.  As before, this then gives a contradiction with the assumption that
T is closed, which entails that there is a uniform finite upper bound to
the lengths of its branches.  The proof that such a pair of sequences
<so,..,sn> and <Mo,..,Mn> can be built carries over without
modification except that we must now also deal with the new rule
applications, viz. those of (=,Sub) and (=,Ref).

The applications of (=,Ref) are adjoined to the applications of those
rules that introduce new constants. None of these applications need
worry us here, since formulas of the form ci = ci are true in all models.

That leaves applications of (=,Sub). Suppose that we have constructed
the pair of sequences <so,..,sn> and <Mo,..,Mn> and that the rule
application in sn is an application of (=,Sub) with identity premise
<ci = cj,T> and second premise <A,T/F>. By assumption A is an atomic
formula, so it is either of the form P(ci1,..,cin) or else an identity. The
argument is the same for these two cases; let us assume, without loss of
generality, that A has the form P(ci1,..,cin). We also assume, again
without loss of generality, that the sign of <A,T/F> is T.

Since applications of (=,Sub) produce no splitting, sn will have a single
successor sn.0 in T. This fixes the next node sn+1 of the sequence as
sn.0.  Also, since no new constants are introduced by applications of
(=,Sub), we can take the model Mn+1 to be the same as Mn. By
induction assumption (i) Mn+1|= ci = cj and (ii) Mn+1|= P(ci1,..,cin). Let
cik be the occurrence of ci in P(ci1,..,cin) which gets replaced in the
given application of (=,Sub) by ci; the result is the T-signed formula
P(ci1,.,cik-1,cj,cik+1,.,cin). It follows directly from the clause for atomic
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formulas in the Truth Definition together with (i) and (ii) above that
M n+1|= P(ci1,.,cik-1,cj,cik+1,.,cin) .

So much for the modification of the proof of TA1. To adapt the proof
of TA2 a little more is needed. To see this suppose for instance that the
sentence c = c' is a sentence from PF(Z), where c and c' are distinct
constants from C(Z).  Then it should be the case that M c = c'.  But
according to the Truth Definition this will be so only if [[c]]M,a  =
[[c']]M,a  (where a  may be any assignment whatever).  But that won't be
the case if FM (c) = c and FM (c') = c', since by assumption c c' .

We adopt the standard solution to this difficulty, which consists in
taking UM  not to consist of the constants in C(Z) themselves, but of
equivalence classes of these constants, which we obtain by "dividing"
the set C(Z) by a certain equivalence relation.  This relation is
generated by the set of all sentences of the form c = c' that belong to
PF(Z).  To be precise, we define the following relation between
constants in C(Z):

c c' iff c = c' & PF(Z) ( ) 

But is this relation really an equivalence relation?  It is, but a few
remarks are in order to show why that is so. First, Reflexivity of holds
because our tableau construction makes sure that c = c gets added to
PF(Z) for every constant c that gets introduced into Z. Secondly, that 
is symmetric follows from our observation above: Suppose that c c ' .
Then c = c' belongs to PF(Z). We know already that c' = c' also belongs
to PF(Z). But that means that c' = c also to PF(Z). For if this formula
doesn't enter Z in some other way, then some application of (=,Sub) in
Z, in which the identity premise c = c' is used to replace the second
occurrence of c' in c' = c' by c, will have added it. Thirdly, i s
transitive, for much the same reason that it is symmetric. Suppose that
c c' and c' c''. Then c = c' and c' = c'' both belong to PF(Z). But then
c = c'' will also belong to PF(Z), either through an application of
(=.Subj) in which c' = c'' is used as identity premise and c = c' as A, or
in some other way.

Along these same lines we can also show that  PF(Z) has the following
proper ty
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Let P be any m-place predicate of L.  (Con )
If P(c1,..., cm ) and c1 = c'1 , ..., cm  = c'm  belong
to PF(Z), then P(c'1,..., c'm ) also belongs to PF(Z).  

Remark 1  "Con " stands for 'Congruence of '.  A binary relation R is
called a congruence relation with respect to some m-place relation S
(where m can be any natural number) iff for any two m-tuples
<a1, ..., am > and <b1, ..., bm >, if <a1, ..., am > & S and <ai,bi> & R for
i = 1, ..., m, then <b1, ..., bm > & S.  So (Con ) states that is a
congruence relation with respect to the m-place relation S which holds
between entities a1 , ..., am  (here the entities are the constants in
C(Z)) iff the sentence P(a1,..,am ) belongs to PF(Z).

Remark 2  Note that (Con ) includes cases where for one or more i m
c'i is the same constant as ci.  In these cases "replacement of one or
more occurrences of ci by c'i" amounts to leaving those occurrences
just as they were.  Since any self-identity formula <c = c,T> will belong
to D(s)C  from the stageat which c has made its entry into the given
tableau branch, (Con ) also covers cases where only some of the
constants in P(c1 ,..., cm ) are replaced by other constants. And of
course, many applications of (=,Sub) will be of this kind. For as we have
formulated (=,Sub), it is always applied to only one constant
occurrence at a time. So whenever the head of the atomic formula that
plays the part of A in the application is a predicate of 2 or more places,
then the application will leave some constant occurrences unchanged.

The properties which have been shown to hold for entail that an open
tableau branch Z can be converted into the following counter-model M.
(We denote the equivalence class generated within the set C(Z) by a
constant c & C(Z) as "[c] ".)

( i ) UM = {[c] : c & C(Z)}

(ii) FM (P)([c1] ,.., [cm] ) = 1 iff  there are c'1 & [c1] ,...,
c'm & [cm]  such that PP(c'1,...,c'm) & PF(Z)

(iii) FM(c) = [c]

The proof that all sentences in PF(Z) are true in M and all sentences in
NF(Z) false in M involves the same steps as the proof of Theorem TA2
given earlier.  Most of the steps carry over without change. The steps
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that deserve a closer look are those for atomic sentences and those for
quantified formulas.

( 1 ) Atomic sentences.

First suppose that P(c1,...,cm) & PF(Z).  Then by (ii) above
FM (P)([c1] ,.., [cm] ) = 1.  So, in virtue of (iii), M P(c1,...,cm).

Now suppose P(c1,...,cm ) & NF(Z).  To show that it is not the case that
M P(c1,...,cm) we need to show (***):

For no c'1 & [c1] ,..., c'm  & [cm ]  , P(c'1,...,c'm ) & PF(Z)  (***)

Suppose there were c'1&  [c1] ,..., c'm  &  [cm ]  such that P(c'1,...,c'm ) &
PF(Z).  Then by (Con ) also P(c1,...,cm) & PF(Z).  But then Z would be
closed, contrary to assumption.  So (***) holds; so by (ii) of the
definition of M FM (P)([c1] ,.., [cm ] ) = 0; so it is not the case that

M P(c1,...,cm).

It is to be noted that we now also have to deal with a type of atomic
sentence which did not play a role in our earlier proof of Lemma 6
under the restrictions there assumed, viz. sentences of the form c = c'.
However, this case is just like the case of atomic formulas of the form
P(c1,...,cm ), of which we have just shown that they behave in the
required way.  It is left to the reader to verify this.

( 2 ) Quantified sentences.

Again we only consider the case of an existential sentence ( x)E(x).
First suppose that ( x)E(x) & PF(Z).  Then there is a node s in Z such
that, for some c & C(Z), <E[c/x],T> belongs to D(s)F.  So by the
induction assumption M E[c/x].  By Corollary 1 to Lemma 2 this
entails that [[E(x)]]M,a  = 1 for any assignment a  such that a(x) =
[[c]]M,a  = FM (c) = [c] .  So it follows from the Truth Definition that

M ( x)E(x).

Second, assume that ( x)E(x) & NF(Z).  Then for no c & C(Z) E[c/x] &
PF(Z).  For suppose that E[c/x] & PF(Z).  Then <E[c/x],T> would belong to
D(s)F  for some node s in Z.  But then c would have had to be a member
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of D(s)C.  Since ( x)E(x) & NF(Z), it may be assumed without loss of
generality that D(s)F also contains <( x)E(x),F>.  So either at s or at
some later stage of Z <E[c/x],F> would have become part of the
decoration as well.  But then Z would have been closed, contrary to
assumption. So it follows that E[c/x] & PF(Z) for no c & C(Z).  Using the
induction assumption we can infer that for no c & C(Z), M  E[c/x].
Relying once more on Corollary 1 of Lemma 2, we conclude that for no
element [c]  of UM , [[E(x)]]M,a[c] /x] = 1.  So it follows from the Truth

Definition that it is not the case that M ( x)E(x).

This completes the modifications that are needed in the proof of
Theorem TA2.

Remark on the rule (=,Sub).

The version of (=,Sub) we have assumed involves the restriction that
replacement of constants is allowed only in atomic formulas. There is
also a stronger version of the rule, according to which replacements of
constants are permitted in arbitrary formulas. That the more general
version of the rule is over all no more powerful than the restricted
version is something that may not be immediately obvious. But one
corollary of our completeness proof is that this must be so: Since
applications of the general version are valid, they must be provable by
means of the tableau method in which only the restricted version of the
rule is used. Ao any proof in which there are applications of the
generalised version of (=,Sub) can be replaced by a proof of the same
argument in which there are only applications of the restricted version.

(=,Sub) also allows for another generalisations, according to which
several occurrences of the same constant c in A can be replaced at
once. Our proof showsthat this generalisation doesn't add real
deductive power either.  However, in this case it is obvious in any case
that the generalisation doesn't buy us more than the version which
permits only one replacement at a time. For, evidently, any case of
simultaneous replacement can  be mimicked by a succession of
applications of (=,Sub), in which each application involves replacement
of just one of these occurrences.

As noted at the outset of this Appendix (see also Section 1.1.3 of this
Chapter), the Soundness and Completeness proofs we have given are
still not quite as general as they might have been, since we have
assumed that the language L contains no function constants.  Extending
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the formal treatment of the tableau method, and exact proofs of
soundness and completeness based on it, to this more general case is a
routine exercise.  But the exercise is awkward and cumbersome, and
doesn't bring anything to light that is of real interest.  On the other
hand, as we noted earlier on, we can generalise the results we have
obtained to languages with function constants by translating arguments
in which function constants occur into arguments in which those
constants have been replaced by corresponding predicate constants.
The reader can find out how this works by going through Exercise EA2
below.

One final observation on the tableau method in the context of this
Chapter.  In Section 1.4 we made use of the fact that for arbitrary sets
of sentences %  (i.e. infinite as well as finite sets) satisfiability coincides
with consistency.  This result is established in the proof of the
Completeness Theorem given in Section 1.2, but strictly speaking it has
not been established by the tableau-related proof we have given in this
Appendix.  The problem is that we have developed our algorithmic
version of the tableau method only for arguments with finite sets of
premises.  We still need to establish that the method can be extended
so that it also covers infitnite premise sets.

As a matter of fact, with the mathematical tools available to us at this
point this result can be proved only for sets that are at most
denumerably infinite.  Given how we have defined first order predicate
logic this doesn't constitute a real limitation, as our definition admits
only denumerable sets of sentences anyway.  But since our formalism
does allow for denumerable sets and since these will play an important
role throughout, the tableau method should be modified so that at least
denumerable premise sets can be handled.

As a matter of fact extending the construction algorithm to this effect
isn't difficult.  Suppose that we want to construct a tableau for the
argument <% | B>, where % is denumerably infinite and C1, C2, .. is a
complete enumeration of % .  Then we can modify the tableau
construction as it was defined hitherto as follows:  We reserve certain
construction stages s for the introduction of a new premise from our
list C1, C2, ..  .  (For instance we could reserve for this purpose those
stages whose length is a prime number.) Each time when such a node s
is reached, (e.g, when length(s) = pn, where pn is the n-th prime
number), we add the pair <Cn,T> (or <Cn,T,/>, depending on the form
of Cn) to the end of DF(s).  Since this is an operation that does not
produce a tableau split, so s has only one successor s.0.  No other
modifications are needed.  So apart from the points where new
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premises are brought into play, everything proceeds as before.
Moreover, if at a given stage of a tableau branch construction no
reduction rules can be applied, then the next premise is "loaded" at
that point.

It should be clear that an open branch B of a completed tableau
constructed according to the new specification will have occurrences
under the column 'TRUE' of all the premises in % . (i. e. % PF(B). So the
model we construct from B will verify all sentences in % .  It is also easy
to see that notwithstanding the extra construction steps that are now
required for the introduction of the premises in % , the length of B will
be at most denumerably infinite.

Exercise EA2.

a . Let L be a language of First Order Predicate Logic with finitely
many function constants f1, ..., fk and let <A1,..., An | B> be an
argument of L.  Let for each i = 1, ..., k ni be the number of argument
places of fi.

We form a new language L' which contains all the predicates of L which
occur in <A1,..., An | B> and which furthermore has for each i = 1, ..., k
a distinct predicate Qfi of ni +1 places which does not occur in <A1,...,
An | B>.  We translate <A1,.., An | B> into an argument <A'1,..., A'n+k |
B'> of L' as follows:

( i ) With any term t of L we associate formulas Pt(x) of L' with
distinguished free variable x.   Pt(x) is defined by induction on the
complexity of t.

( a ) If t is the variable vi, P(t) is the formula x = t, where x is a
variable not occurring in t.

(b) Supppose that t = f(t1 ,...,tm ), and that Pt1(x), .., Ptm (x) have
been defined.  Choose distinct variables x1,...,xm  not 
occurring in t and let Pt(x) be the formula

("x1)..("xm )(Pt1(x1) & .. & Ptm (xm ) & Qf(x1,..,xm ,x)).

( i i ) Each of the sentences A1,..., An, B is translated as follows.  (In the
description of the translation we focus on A1 but the same procedure
applies to all other sentences of the argument)
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( a ) Let #  be an occurrence of the atomic formula P(t1 ,..., tn) in A1.
Then we replace this occurrence by the formula

("x1)..("xn)(Pt1(x1) & .., & Ptn(xn) & P(x1,..,xn)),

where x1,..,xn are variables not occurring in A1.

( b ) Let #  be an occurrence of the atomic formula t1 = t2  in A1.  Then
we replace this occurrence by the formula

("x1)("x2)(Pt1(x1) & Pt2(x2) & x1 = x2) .

where x1, x2 are variables not occurring in A1.

(iii) The translation of the argument <A1,..., An | B> is the argument
<A'1,..., A'n+k | B'>, where

( a ) for I = 1, ..., n A'i is the translation of Ai as described under
(ii);

( b ) B' is the translation of B as described under (ii);  and

( c ) for j = n+1, ..., n+k A'j is the sentence

     (!x1)..(!xnj)("y)(Qfj(x1,..,xm ,y) &
        (!y)(!y')(Qfj(x1,..,xm ,y) & Qfj(x1,..,xm ,y') y = y'))

(This sentence says that Qfj behaves like an m-place function with the
function value represented by its last argument.)

Show:  A1,..., An  B iff A'1,..., A'n+k   B' ( 1 )

b. Show (1) for the case where L has infinitely many function
constants .

Exercise EA3.

Suppose that <A1,..., An | B> is an argument in which = does not occur.
We can then still apply the tableau construction as described for
arguments which do contain occurrences of =. Show that when a
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tableau for  <A1,..., An | B> that is constructed according to this
method has an open branch and is the relation between constants
determined by this branch, then  is the identity relation on the set C
of constants occurring in this branch (i.e. = {<c,c>: c & C}.

Exercise EA4.

We can prove the correctness and completeness results for argumentts
with constants also by modifying the tableau construction algorithm
directly.  This is not difficult in principle, but it requires careful
bookkeeping. For as soon as we have to deal with function constants of
1 or more argument places, the number of terms that have to be
substituted for univeral quantifiers under True and existential
quantifiers under False explodes. (Even with one 1-place function
constant f and one indvidiual constant c we get an infinite number of
such terms: f(c), f(f(c)), f(f(f(c))) and so on. Since we cannot allow for
any of the possible substitutions to be "missed" by the algorithm, some
kind of "pecking order" among the terms has to be defined, so that via
the right kind of rotation system each pair consisting of (i) a term that
can bebuilt form the function constants and the individual constants
that have been introduced and (ii) a formula that can be instantiated by
the term gets its turn.

Think of a modification of the construction algorithm which guarantees
that every possible substitution of every closed term for the quantifiers
of such formulas is executed at some point in the course of the
construction of every infinite (open) branch of a non-closing tableau.

Solution to Ex. EA4.

The result that needs showing is that

A1,..., An  B iff A'1,.., A'n, A'n+1.., A'n+k   B' (*)

where the first argument belongs to a language L with function
constants f1 ,.., fk , the second argument belongs to the language L'
which has instead of each n-place function constant fi of L a new
p(n+1)-place predicate Qfi, A'1,.., A'n are the translations of A1,..., An
and A'n+1.., A'n+k  are the axioms that state that the new predicates are
functional in their last arguments. (*) followss from the following
statement (1)
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( 1 ) Let C be any formula of L, M = <U,F> a model for L and let M' =
<U,F'> be the model for L' which is obtained by putting:
( i ) F'(#) = F(#) for all # & L L',
( i i ) F'(Qfi,)(<u1,.. un, un+1>) = 1 iff F'(fi,)(<u1,..., un>) = un+1.
Then for any assignment a  in M, [[C]]M,a = [[C]]M',a

We first show that (1) entails (*). First suppose that
A'1,.., A'n, A'n+1.., A'n+k   B'. Let M be a model for L and a a n
assignment in M such that [[Ai]]M,a = 1 for i = 1,..,n. Let M' be the
model for L' that is obtained from M in the way described under (1).
Then the following two statements hold:

( i ) [[A'i]]M',a = 1 for i = 1,..,n, because of (1)
( i i ) [[A'i]]M',a = 1 for i = n+1,..,n+k, because of the way M' is

constructed from M.

Since by assumption A'1,.., A'n, A'n+1.., A'n+k  B', it follows that
[[B']]M',a = 1. So by (1) [[B]]M,a = 1. Since this holds for arbitrary M
and a we conclude that A1,..., An  B.

Now suppose that A1,..., An  B. Let M' be a model for L' such that
[[A'i]]M',a = 1 for i = 1,..,n+k. Note that since [[A'n+j]]M',a = 1 for j =
1,..,k, there is for each j = 1,..,k and each mj-tuple <u1,..., um j> (where
m j is the arity of the function constant fj) a unique object wj in U such
that [[Q(x1,..., xm j,y>]]M',a[wj/y] = 1. This means that we can define
the model M for L from M' by keeping its universe U and the
interpretations F'(# ) for all # & L L' while defining the interpretations
F(fj) of the function constants fj of L by the clause:

for every mj-tuple <u1,.,um j> of objects & U, F(fj)(<u1,..., m j>) =  wj,
where wj is the object that is uniquely determined by <u1,..., m j> in the
way indicated above.

It is easily seen that because of the way in which we have defined the
interpretations of the function constants of L in M, M and M' are
related as in (1). So by (1) we get that  [[Ai]]M,a = 1 for i = 1,..,n. Since
by assumption A1,..., An  B, it follows that [[B]]M,a = 1. So by (1)
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[[B']]M',a = 1. Again we can conclude because of the generality of the
reasoning that this holds for arbitrary models M' for L', so that A'1 ,..,
A'n, A'n+1.., A'n+k   B'.

This concludes the proof that (1) entails (*). To prove (1) we have to
proceed in two steps. The second step consists in proving (1) by
induction on the complexity of formulas. But before we can do that, we
first have to prove another fact by induction on the complexity of
terms. This fact consists in  each term t having the following property
(1 .a ) :

( 1 . a ) If  M and M' are related in the manner of (1) and a is any
assignment in  M, then [[t]M,a = is the unique element wj o f
U such that[[Pt(x)]M',a[wj/x] = 1.

In the proof of (1.a) we can keep M and M' fixed.

( i ) If t is the variable vi, then Pt(x) is the formula x = vi. In this case
there is obviously only one element in U such that [[x = vi]M',a[wj/x] =
1, namely the element that a assigns to vi.

( i i ) Now suppose that t = f(t1 ,..., tm ) and that (1.a) has been proved
for t1 ,.., tm . Let u1 ,.., um  be the objects denoted in M under a  by t1 ,..,
tm , respectively (i.e ui = [[ti]M,a for i = 1,..,m. By induction assumption
we have that ui  is the unique element of U such that
[[Pti,(x)]M',a[ui/x] = 1.

Note further that in this case Pt(x) is the formula

( 2 ) ("x1)..("xm )(Pt1(x1) & .. & Ptm (xm ) & Qf(x1,..,xm ,x)).

Let u be the value of the term t in M under the assignment a , i.e. u =
[[t]M,a. First we show that u satisfies Pt(x) in M' under a . This follows
from the fact that u is the value which F(f) returns for the arguments
u1,.., um , since these satisfy the predicates  Pt1(x1),.., Ptm (xm ) in M
under a .  Since by the definition of M' <u1,..,um ,u> belongs to the
extension of F(Qf), it follows that u satisfies (2) in M' under a , i.e,
[[Pt(x)]]M,a[u/x] = 1.

Now suppose that u' is an object that satisfies (2) in M' under a .  We
have to show that u' = u.  Since u satisfies (2) there  are objects u'1 ,..,
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u'm  which satisfy Pt1(x1),..,Ptm (xm ) in M under a . But since by
assumption the satisfiers of Pt1(x1),.., Ptm (xm ) are unique, it follows
that for i = 1,..., m, u'i = ui.  From the definition of M' it follows that
there is just one object w such that u1 ,.., um ,w> belongs to the
extension of F(Qf), We already know that u has this property. So if u'
has this property too, then u' = u.

To prove (1) we proceed by induction on the complexity of formulas of
L. First, let A be an atomic formula of L. Then A is either of the form
P(t1 ,..., tm ) or of the form t = s. Suppose that A is of the form
P(t1 ,..., tm ). Then P(t1 ,..., tm )' is of the form

( 3 ) ("x1)..("xm )(Pt1(x1) & .., & Ptm (xm ) & P(x1,..,xm ))

Suppose [[A]]M,a = 1. Let a ' = a[ [t1]]M,a /x1 ]..[ [tm ]]M,a /xm ]. By
Lemma 2 of p. 18 [[P(x1,..,xm )]]M,a ' = 1 and so, using the fact that F'(P)
= F(P), [[P(x1,..,xm )]]M',a ' = 1. By property (1,a) [[Pti(xi)]]M',a ' = 1 for
i = 1,.., m. So the conjunction Pt1(x1) & .. & Ptm (xm ) & P(x1,..,xm ) is
satisfied in M' by a '. Therefore (2) is satisfied in M' by a  (using the
clause for the existential quantifier in the Truth Definition).

Conversely, assume that [[(2)]]M',a = 1. Then there are u1,.., um  in U
such that [[Pt1(x1) & .., & Ptm (xm ) & P(x1,..,xm )]]M',a' = 1, where
a ' = a[u1/x1 ] .., [um /xm ]. From [[Pti(xi)]]M',a' = 1 we can infer, using
(1.a), that ui = [[ti]]M,a. Since also [[P(x1,..,xm )]]M',a' = 1, this entails
that F'(P)(<[t1]]M,a ,.., [tm ]]M,a>) = 1, and, using once more that F'(P)
= F(P), we conclude that F(P)(<[t1]]M,a,.., [tm ]]M,a>) = 1, which comes
to the same thing as [[P(t1,..,tm )]]M,a = 1, i.e. [[A]]M,a = 1.

The case where A is the formula t = s can be dealt with in essentially the
same way.

What remains are the inductive steps in the proof of (1). These are
largely routine. Suppose - to take one of the least uninteresting steps -
that A is the formula ("vi)B. In this case A' will be the formula ("vi)B',
where B' is the translation of B.

Suppose that [[A]]M,a  = 1 By the Truth Definition there is a u in U such
that [B]]M,a[u/vi] = 1. Then, by the Induction Hypothesis,
[B']]M',a[u/vi] = 1. So by the Truth Def. [("vi)B']]M',a  = 1. But ("vi)B' =
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(("vi)B)' = A'. So [A']]M',a  = 1. The converse direction is proved
analogously.

All other inductive steps of the proof of (1) are similar to this one, or
even simpler. This concludes the proof of (1) and thus of the exercise.

q.e .d.

The Craig Interpolation Theorem.

First order predicate logic has several properties which seem very
plausible and natural, but which do not obtain for systems of formal
logic in general. One of these is the interpolation property. A formalism
(such as first order predicate logic) is said to have this property if the
following holds:

( i p ) Suppose A and B are formulas such that A  B. Then there is a 
formula C in the common vocabulary of A and B such that A  C 
and C  B.

Explicating what is meant by "in the common vocabulary of A and B"
depends in general somnewhat on the specification of the logical
system in question. But for the case of first order predicte logic the
explication is straightforward: C is in the common vocabulary of A a n d
B iff every non-logical constant occurring in C occurs both in A and in
B.

Another way to put this is as follows. Let LA be the language whose non-
logical constants are those occurring in A, let LB  be defined analogously
and let LAB be the language LA LB. Then C is in the common
vocabulary of A and B iff C is a formula of the language LAB.

The claim that first order predicate logic has the interpolation property
can thus be stated as follows:

Thm. (Craig Interpolation Theorem)

Let A and B be sentences of first order predicate logic such that
A  B. Then there is a sentence C of the language LAB = LA LB,
such that A  C and C  B.
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Proof. The proof of this theorem is surprisingly easy when we build
upon the completeness proof given in this Appendix, in which
correctness and completeness have been proved for the method of
proof by semantic tableau construction. This is the way we will proceed
here. (Another proof of the Interpolation Theorem, which builds on the
completeness proof given in the main part of this chatper, can be found
in Ch. 2)

Before we start with the proof itself, first a trivial but useful
observation. We can rephrase the interpolation property as in (1)

( 1 ) Let A and B be sentences of first order predicate logic such that
A  B. Then there is a sentence C of the language LAB = LA LB,
such that A  C and B  C.

Suppose that A  B. Then, by the Completeness Theorem, the semantic
tableau for the argument <A | B> will close. This closed tableau will be
finite and thus in particular it will have finitely many end nodes. An end
node s of a closed tableau always means that closure has been obtained
in the step that led to the construction of s; in other words, DF(s )
contains a pair of signed formulas <E,T> and <E,F> (i.e. a pair with the
same formula E but opposite signs) that are responsible for closure of
the branch of which s is the last node, i.e. two signed formulas with
opposite signs but the same formula E. Each of these formulas is either
obtained via 0 or more of successive reductions from A, or else is
obtained in this way from B. The end nodes that are of special interest
for the construction of the inerpolating sentence C are those where one
of the two signed formulas that produce closure comes from A and the
other from B.  In that case E will belong to LAB, and can be used as a
piece in the construction of C. Moreover, we can then show that the
formulas in the given branch which stem from A entail E while the
formulas in the branch stemming from B entail E, or vice versa.
(Details follow presently.) The other two types of end nodes - (i) both
signed formulas stem from A or (ii) both signed formulas stem from B -
must be handled in a slightly different way. For instance, suppose that
both signed formulas that produce closure stem from A. That means
that the set of all formulas stemming from A in the branch of which s is
the end node entail a contradiction. This means that we can choose a
contradictory sentence from LAB (e.g. ( v1)v1  v1 ) to give us the
piece for the construction of C contributed by this node. The formulas
occurring in the branch that stem from A entail in this case whereas
those stemming B (trivially) entail . The case where both signed
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formulas that produce closure stem from B can be handled
analogously.

In this way we can associate with each end node a pair of formulas
(C, C) from LAB. We can then work our way up from the end nodes to
the root, constructing at each step a pair for formulas (C, C) for the
given mother node on the basis of such assignments to her daughter
node or nodes. In the end we arrive at such a pair for the root <>. The
C of that pair will then be the interpolating formula we are looking for.

To make this precise we must begin by defining the notion "stemming
from". This is quite simple. Given an argument <A | B>, we can annotate
every formula that gets produced in the course of the tableau
construction with "A" or "B", depending on whether it comes from the
first or the second of these formulas. The simplest way to do this is to
extend the signature of a formula with an additional slot, to be
occupied by either "A" or "B". Thus a signed formula will now have the
form of a triple41 <E,T/F,A/B>, where E is a formula, the second slot is
filled with either a "T" or an "F" depending on whether the formula is
meant to be true or false, and the third slot has an "A" or a "B"
depending on whether the signed formula stems from A or from B.  The
premise A and the conclusion B are of course marked as "stemmng
from themselves"; that is, DF(<>) = <<A,T,A>,<B,F,B>>. Furthermore,
the "stemming from" information is simply passed on from each signed
formula to the one or two that result(s) from its reduction. (For
instance, when the formula <G&H,T,A> is reduced at node s, then the
new formulas added to DF(s) in the transition to DF(s.0) are <G,T,A>
and <H,T,A>.)

Given this information about the origin of the formulas which occur in
the sequences DF(s) it is possible to associate with a node s a formula
that "conjoins" all the formulas that are part of the decoration of s or
any of its predecessors. Let DESC(A,s) be the set of all formulas E such
that <E,T,A> occurs in the decoration of s or in that of some
predecessor of s, and of all formulas E, such that <E,F,A> occurs in
the decoration of s or in that of some predecessor of s; and let
REPR(A,s) be the conjunction of all the formulas in DESC(A,s); similarly
for DESC(B,s) and REPR(B,s).

4 1 As before, universally quantified formulas marked "T" and existentially
quantified formulas marked "F" involve as an additional component of their
signatures the set of constants with which their quantifiers have already been
instantiated. So in the case of such formulas signed formulas are now 4-tuples..
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In order to formulate the precise hypothesis that we will be able to pull
through the mentioned backwards induction, there is one more matter
we need to address. Tableau construction involves the introduction of
new constants. We have built a mechanism for recording which
constants have been introduced by the time a tableau node s has been
reached, viz. by including the sequence DC (s) in the decoration of s.
The constants in DC (s) can occur in the formulas that occur within
D F(s) and that is so in particular for those formulas associated with an
end node s which produce the closure of the branch of which s is the
last node. This means that in such cases we cannot assume that the
formula C we want to construct for s belongs to the language LAB.
Rather, we will only be able to assume that it belongs to the language
we will call LAB,s, the language whose non-logical constants are those
of LAB together with the constants in DC(s).

We are now ready to formulate the hypothesis we will be able to prove
by "backwards induction" on the nodes of the closed tableau <T,D> for
<A | B>:

( 2 ) For each node s of the tree T for < A | B> there is a sentence C
from the language LAB,s, such that REPR(A,s)  C and
REPR(B,s)  C.

That we can find a C of the required kind for each of the end nodes of T
has already been shown. (Now that we have defined REPR(A,s) and
REPR(B,s) explicitly, it is easy to verify that the claims we made abut the
three types of end nodes earlier are true in the precise formal sense of
(2).) To prove the inductive steps of the argument we once again
consider only a few representative cases.

( i ) Suppose that the formula reduced at the node s is G, that G
stems from A and that the sign of G is T. We assume that a sentence C
from the language LAB,s.0 has already been associated with s's one
successor node s.0 and that  (2) holds for s.0 and this C. The
difference between REPR(A,s) and REPR(A,s.0) is in this case merely
that REPR(A,s.0) contains a conjunct corresponding to the signed
formula <G,F,A>. But this conjunct is just G, and that formula is also
part of the conjunction REPR(A,s) because of the presence of < G,T,A>
in DF(s). So REPR(A,s) and REPR(A,s.0) are logically equivalent.
Moreover, we have in this case that LAB,s.0 = LAB,s. So we can take for
the sentence associated with s C itself. Then REPR(A,s)  C; and since
REPR(B,s.0) is identical with REPR(B,s), also REPR(B,s)  C.
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(i i ) Suppose now that the formula reduced at the node s is G, that G
stems from A, but that the sign of G is F. Again we assume that a
sentence C from the language LAB,s.0 has been assigned to s.0. In this
case the difference between REPR(A,s) and REPR(A,s.0) is that
REPR(A,s.0) has the additional conjunct G. However, REPR(A,s) has G
as a conjunct (because of the signed formula < G,F,A> in the
decoration of s). So again REPR(A,s) and REPR(A,s.0) are logically
equivalent and (2) follows for s.

(ii i) Now consider the case where the reduction of s involves the
signed formula <G&H,F,A>. Then s has two successors s.0 and s.1 .
Suppose that for both of these we have sentences C0 and C1 satisfying
(2). Note that in this case REPR(A,s.0) has, as compared to REPR(A,s),
the additional conjunct G and that REPR(A,s.1) has the additional
conjunct H. So REPR(A,s.0) is logically equivalent to (REPR(A,s) & G)
and REPR(A,s.1) to (REPR(A,s) & H). We further note that REPR(A,s)
has as one of its conjuncts the formula (G&H) and finally that
LAB,s.0 = LAB,s.1 = LAB,s. Let the sentence C associated with s be
(C0 v C1). Then, since (REPR(A,s) & G)  C0,
(REPR(A,s) & G)  C0 v C1, and by an analogous argument
(REPR(A,s) & H)  C0 v C1. So (REPR(A,s) & ( G v H)  C0 v C1. But

G v H is logically equivalent to (G & H), and that formula is a
conjunct of REPR(A,s). So again REPR(A,s) and REPR(A,s.0) are logically
equivalent, and it follows that REPR(A,s)  C.

We further note that REPR(B,s.0) = REPR(B,s.1) = REPR(B,s) in this case.
by induction assumption we have that REPR(B,s.0)  C0 and
REPR(B,s.1)  C1. So REPR(B,s)  C0 and REPR(B,s)  C1. Therefore
REPR(B,s)  C0 & C1 and so REPR(B,s)  (C0 v C1), i,e,
REPR(B,s)  C. This concludes the proof of case (iii).

( iv) Now suppose the reduction at s is of the signed formula
<( vi)G,T,A>. In this case a new constant ck has been introduced in the
transition from s to s.0, i.e. LAB,s.0 = LAB,s  {ck}. REPR(A,s.0) now
has besides the formulas from REPR(A,s) as new conjunct the formula
G[ck/vi]. So we have by induction assumption: REPR(A,s) & G[ck/vi] 
C', where C' is the sentence from LAB,s.0 that has been associated with
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s.0. We can rewrite this as REPR(A,s)  G[ck/vi]  C'. Since ck does not
occur in REPR(A,s), it follows that

REPR(A,s)  G[ck/vi][vr/ck]  C'[vr/ck] ( i )

where vr is a variable not occurring in either G or C'. (Here, as always,
C'[vr/ck] is the result of replacing all occurrences of ck in C' by vr and,
similarly, G[ck/vi][vr/ck] the result of replacing all occurrences of ck
in G[ck/vi] by vr. Note that G[ck/vi][vr/ck] has free occurrences of vr
in all and only those positions in which G has free occurrences of vi. So
we may write "G[ck/vi][vr/ck]" also as "G[vr/vi]".

From (i) we can infer (ii) and from (ii) we infer (iii) since the right
hand side of (iii) follows logically from the right hand side of (ii).

REPR(A,s)  ( vr)(G[ck/vi][vr/ck]  C'[vr/ck]) ( i i )

REPR(A,s)  ( vr)G[vr/vi]  ( vr)C'[vr/ck] (iii)

It is easy to verify that ( vi)G  ( vr)G[vr/vi]. (( vi)G and ( vr)G[vr/vi]
are alphabetic variants; see Section 1.1 of this chapter.) Moreover,
( vi)G is a conjunct of REPR(A,s). We now choose as sentence C
associated with s the sentence ( vr)C'[vr/ck]. Note that ck does not
occur in C, so that C belongs to LAB,s. From what has been argued it is
clear that REPR(A,s)  C. On the other hand, by induction assumption
REPR(B,s.0)  C'. Since the reduction step which leads from s to s.0
does not involve a formula stemming from B we have once more that
REPR(B,s) = REPR(B,s.0). So REPR(B,s.0) has no occurrences of ck.
Therefore, it follows from the Induction Hypothesis that
REPR(B,s.0)  C'[vr/ck]. So REPR(B,s.0)  ( vr) C'[vr/ck]. Since
( vr) C'[vr/ck] is logically equivalent to ( vr)C'[vr/ck], we conclude
that REPR(B,s)  C.This concludes the proof of case (iv).

( v ) Finally suppose the reduction at s is a reduction of the signed
formula <( vi)G,F,A>.  In this case the reduction step involves
instantiating the quantifier of ( v i)G by a constant ck that belongs to
LAB,s. So LAB,s.0 = LAB,s. Again, let C' be the sentence associated with
s.0. The new conjunct of REPR(A,s.0) is now G[ck/vi], whereas

( vi)G is a conjunct of REPR(A,s). Since ( vi)G G[ck/vi] and since
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by induction assumption REPR(A,s.0)  C', it follows that REPR(A,s)  C'.
So we can take for the sentence associated with s simply this same C.

All other inductio steps are closely similarr to one of those we have
presented. So we may consider the proof of (2) as completed.

Applying (2) to the root <> we obtain a sentence C in the language LA B
such that  A  C and B  C. This proves the theorem.

q.e .d.


