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1. Motivation & Introduction
• Translating prepositions is difficult in SMT
⇒Reproduce the preposition’s meaning in the input sentence
⇒Take into account target-side context
• Some prepositions convey a meaning → straightforward
translation
I to sit under/on the table

• Some prepositions are functional → largely depend on
target-language restrictions
I to believe in something

• Prepositions are typically determined by a governor
I Verbs: to believe in sth.
I Nouns: an interest in sth.

• Additionally, prepositions can depend on the class of nouns
that are governed
I to learn from [a person] → lernen von [einer Person]
I to learn from [the past] → lernen aus [der Vergangenheit]

• We enrich an EN-DE string-to-tree SMT system with
noun class information to model selectional preferences

2. Modeling Selectional Preferences
Methodology
• Annotating noun class information into the parse trees
used to train a syntax-based SMT system

to learn from [NP] → lernen von [NPPerson]
→ lernen aus [NPAbstract]

• The enriched translation rules are restricted to those of
a specific semantic class appropriate for a given context

• Using noun class information to obtain more precise
translation rules that incorporate selectional preferences

• Aims at introducing a semantic level into SMT

Noun class information
• Three variants of noun class information
1. Classes induced from the lexical resource GermaNet
⇒ Conceptually refined target-language information

2. Cluster analyses based on window information
3. Cluster analyses based on syntactic features
⇒ Generalization over contexts (in “raw” form or based on syntactic
structures): take into account more target-language information

• Comparing resource-based and distributional information

PP rule generation
• Semantically fine-grained information might lead to
a loss of generalization

• Make generic rules accessible to the system
• Generate new PP rules that are not accessible to the
baseline in order to cover all functional prepositions

3. Obtaining Noun Class Information
• Pre-processing: identification of named entities

I Consistent distinction of named entities and common nouns
I Named entities classified into organization, location, person, rest

• Pre-processing: compound handling
I Noun compounding is very productive: compound-splitting
I Compounds are added into classes based on their head nouns

GermaNet
• Lexical-semantic taxonomy that groups words of the same
concept into synsets (→ WordNet)

• Look up the GermaNet class for a given hierarchical level

Clustering
• Standard k-Means implementation in R
• What number of clusters provides

I A good representation of the nouns
I An optimal level of abstraction for the SMT system?

• Varying cluster sizes: 10 - 300 clusters

• Clustering based on window information
I Content words from a window of 10 words to each side of the noun
⇒Often results in “topic-like” clusters

• Clustering based on syntactically-motivated features
I Prepositions governing the target nouns P
I Verbs subcategorizing the target nouns VO
I Verbs governing the target nouns in a prepositional phrase VPN
I Nouns governing the target nouns in a prepositional phrase NPN
⇒ Using subcategorization criteria aims at obtaining classes that

provide salient information for modeling the choice of prepositions

5. Using Noun Class Information in SMT
• Create two variants for the translation of learned fromNN

VP → PP-von-167 gelernt
VP → PP-aus-291 gelernt

• Nouns of the classes 167 (person) and 291 (abstract
concept) are appropriate fillers for the PPs

Back-off strategies
• Add baseline rules (rules without annotation) BL
• No annotation for rules based on low-frequency
source-target pairs (f ≤ 5) BL+cutoff

Generating new PP rules
• Not all potentially necessary rules might be available
• Provide the full possible set of rules containing functional
prepositions (i.e. prepositions with little or no meaning)

• Create new rules for a set of 17 functional prepositions
• Translation probabilities for new rules: based on
co-occurrence frequencies extracted from large corpora
original rule (target-side) prob.
VP → [pp-von-166] lernen , [s] 1

new PP rules (target-side) prob. pnv-tuple freq
VP → [pp-aus-166] lernen , [s] 0.159 aus nn-166 lernen 38
VP → [pp-für-166] lernen , [s] 0.021 für nn-166 lernen 5
VP → [pp-in-166] lernen , [s] 0.126 in nn-166 lernen 30
VP → [pp-mit-166] lernen , [s] 0.021 mit nn-166 lernen 5
VP → [pp-von-166] lernen , [s] 0.336 von nn-166 lernen 80
VP → [pp-über-166] lernen , [s] 0.336 über nn-166 lernen 80

• Adding generated rules new rules
• Adding both back-off and new rules BO+new

4. Annotation of PP-nodes and NP-nodes of the Target-Side Parse Trees

<tree=s>
<tree=adjd> wirtschaftlich </tree>
<tree=vafin-haben> hat </tree>
<tree=np-LOC>

<tree=ne-LOC> malaysia </tree>
</tree>
<tree=vp>

<tree=pp-von-167>
<tree=prp-von-167> von </tree>
<tree=pposat> seinen </tree>
<tree=nn-167> nachbarn </tree>

</tree>
<tree =vvpp> gelernt </tree>

</tree>
</tree>

economically, Malaysia has learned from its neighbors.

<tree=s>
<tree=kous> dass </tree>
<tree=np-180>

<tree=art> die </tree>
<tree=nn-180> amerikaner </tree>

</tree>
<tree=vp>

<tree=pp-aus-291>
<tree=prp-aus-291> aus </tree>
<tree =art> der </tree>
<tree=nn-291> vergangenheit </tree>

</tree>
<tree=vvpp> gelernt </tree>

</tree>
<tree=vafin-haben> hätten </tree>

</tree>

that the Americans had learned from the past.

6. Experiments
• String-to-tree Moses system with GHKM extraction
• Morphology-aware translation system allows to explicitly
model portmanteau prepositions

• SMT system: 1.5M parallel sentences (Europarl + news)
• Feature extraction: additional 44M sentences (web data)

System BLEU System BLEU
Baseline 13.95 Window10 14.01
GermaNet-2 (25) 13.93 Window50 14.18
GermaNet-3 (79) 13.77 Window75 13.69
GermaNet-4 (175) 13.67 Window100 14.13
GermaNet-5 (392) 13.67 Window300 13.71
Syntactic features P VO VPN NPN
100 classes 13.85 13.85 13.79 13.71
50 classes 13.84 14.06 14.06 13.91

System BL+cutoff BL new rules BL+new rules
Window50 13.95 13.99 14.11 13.98
Window75 14.16 13.96 13.66 14.01
Window100 14.01 13.94 14.14 14.02

7. Discussion & Conclusion
• None of the systems is better than the baseline
• Manual evaluation of correctly translated prepositions:
little difference between the systems

• No systematic behaviour or types of prepositions
that are translated better or worse across the systems

• Particularly difficult: prepositions with a predominant
literal meaning in an infrequent subcategorized context

EN for example, Germany has been criticized for passivity
DE beispielsweise, Deutschland *für Passivität kritisiert worden

REF wegen Passivität wurde zum Beispiel Deutschland kritisiert

• Context-dependent interaction of being a functional or
content-bearing preposition, importance of involved noun
classes: not well-captured by inflexible annotation method

• Noun class annotation into parse trees → hard constraint
• Compensate for overly specific rules with non-annotated
rules and rules synthesized from monolingual data

• No generally applicable level of semantic information:
rigid annotation → rules of the same degree of specificity

• Results demonstrate that
I Clustering based on window co-occurrence seems to be more robust
than syntax-based clusters or GermaNet ⇒ Resources

I Parse tree annotation is not flexible enough to take into account
varying needs of different contexts ⇒ Integration method

• Idea for future work: combine distributional (→ robust,
coverage) and resource-based information (→ high quality)
to obtain salient information on selectional preferences
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