Neural-based Noise Filtering from Word Embeddings

Kim Anh Nguyen, Sabine Schulte im Walde, Ngoc Thang Vu Institute for Natural Language Processing - University of Stuttgart, Germany {nguyenkh, schulte, thangvu}@ims.uni-stuttgart.de

MOTIVATION

- Hypothesis: Word embeddings contain unnecessary information, i.e. *noise*.
- Goal: Improve word embeddings by reducing their noise.
- Procedure: Strengthen salient contexts and weaken unnecessary contexts.
- Example sentence:

The quick brown fox gazing at the cloud jumped over the lazy dog

CONTRIBUTIONS

We propose two neural models to filter noise from word embeddings:

- 1. The complete word denoising embeddings model (*CompEmb*)
- 2. The overcomplete word denoising embeddings model (*OverCompEmb*)

The denoising embeddings outperform the originally state-of-the-art embeddings on several benchmark tasks.

MODELS

1. Complete Word Denoising Embeddings (CompEmb):

- Learn a denoising matrix $\mathbf{Q}_{\mathbf{c}}$ by optimizing the following objective function:

ILLUSTRATION OF MODELS

$$\underset{\mathbf{X},\mathbf{Q}_{c},\mathbf{S}}{\operatorname{argmin}} \sum_{i=1}^{n} \|\mathbf{x}_{i} - f(\mathbf{x}_{i},\mathbf{Q}_{c},\mathbf{S})\| + \alpha \|\mathbf{S}\|_{1} \quad (1)$$

- Project the original embeddings **X** into **Q**_c to generate the *CompEmb* **X***:

 $\mathbf{X}^* = \mathcal{G}(\mathbf{X}\mathbf{Q_c})$

(2)

(4)

RESILTS

2. Overcomplete Word Denoising Embeddings (OverCompEmb):

Transform the original embeddings X into the overcomplete embeddings Z.
Learn a denoising matrix Q_o by optimizing the following objective function:

$$\operatorname{argmin}_{\mathbf{X},\mathbf{Q}_{o},\mathbf{S}} \sum_{i=1}^{V} \|\mathbf{z}_{i} - f(\mathbf{x}_{i},\mathbf{Q}_{o},\mathbf{S})\| + \alpha \|\mathbf{S}\|_{1}$$
(3)

- Project the original embeddings **X** into **Q**_o to generate the *OverCompEmb* **Z***:

 $\mathbf{Z}^* = \mathcal{G}(\mathbf{X}\mathbf{Q_o})$

EXPERIMENTAL SETTINGS

Dataset	#Instance	Parameters	Values	
SimLex-999	999		1: 000 1: 100	
WS353-SIM	203	Embeddings	$d_{1m} = 300; d_{1m} = 100$	
MEN	3000	Overcomplete factor	$\gamma = 10$	
WS353-REL	252	ℓ_1 regularization	$\alpha = 0.5; \lambda = 10^{-6}$	
TOEFL	80	Filter denth	T - 3	
ESL	50			
Lazaridou et al. (2013)	2227	Corpus size	14.5B tokens	
	DatasetSimLex-999WS353-SIMMENWS353-RELTOEFLESLLazaridou et al. (2013)	Dataset#InstanceSimLex-9999999WS353-SIM203MEN3000WS353-REL2522TOEFL80ESL50Lazaridou et al. (2013)2227	Dataset#InstanceSimLex-999999WS353-SIM203MEN3000WS353-REL252TOEFL80ESL50Lazaridou et al. (2013)2227	

Vectors		Simlex-999	MEN	WS353	WS353-SIM	WS353-REL	ESL	TOEFL	NP		
		Corr.	Corr.	Corr.	Corr.	Corr.	Acc.	Acc.	Acc.		
SG-100	X	33.7	72.9	69.7	74.5	65.5	48.9	62.0	72.8		
	\mathbf{X}^*	33.2	72.8	70.6	74.8	66.0	53.0	64.5	78.5		
	\mathbf{Z}^*	35.9	74.4	71.2	75.2	68.1	53.0	62.0	79.1		
	A	32.5	69.8	65.5	69.5	60.2	55.1	51.8	78.8		
	B	31.9	70.4	65.8	72.6	62.2	53.0	58.2	74.1		
SG-300	X	36.1	74.7	71.0	75.9	66.1	59.1	72.1	77.9		
	\mathbf{X}^*	37.1	75.8	71.8	76.4	66.9	59.1	74.6	79.3		
	\mathbf{Z}^*	36.5	75.0	70.6	76.4	64.4	57.1	77.2	78.6		
	Α	32.9	72.4	67.5	71.9	63.4	53.0	65.8	78.3		
	B	32.7	71.2	63.3	68.7	56.2	51.0	70.8	78.6		
GloVe-100	X	29.7	69.3	52.9	60.3	49.5	46.9	82.2	76.4		
	\mathbf{X}^*	31.7	70.9	58.0	63.8	57.3	53.0	88.6	77.4		
	\mathbf{Z}^*	30.0	70.9	56.0	62.8	53.8	57.0	81.0	77.3		
	Α	30.7	70.7	54.9	62.2	51.2	55.1	78.4	77.1		
	B	31.0	69.2	57.3	62.3	53.7	46.9	73.4	76.4		
GloVe-300	X	37.0	74.8	60.5	66.3	57.2	61.2	89.8	74.3		
	\mathbf{X}^*	40.2	76.8	64.9	69.8	62.0	61.2	92.4	76.3		
	\mathbf{Z}^*	39.0	75.2	63.0	67.9	59.7	57.1	86.0	75.7		
	Α	36.7	74.1	61.5	67.7	57.8	55.1	87.3	79.9		
	B	33.1	70.2	57.0	62.2	53.0	51.0	91.4	80.0		

3. The architecture of filters *f*:

- The architecture of filter *f* for learning **Q**_c:

- The architecture of filter *f* for learning **Q**_o:

Vectors **X** represent the baselines; vectors **A** and **B** were suggested by Faruqui et al. (2015); vectors \mathbf{X}^* and \mathbf{Z}^* are the denoising embeddings in which the vector length \mathbf{Z}^* is equal to 10 times of vector length **X**.