Hierarchical Embeddings for Hypernymy Detection and Directionality Kim Anh Nguyen, Maximilian Köper, Sabine Schulte im Walde, Ngoc Thang Vu

MOTIVATION

- Hypothesis: each common context of a hyponym–hypernym relation is an indicator to determine which of two words is semantically more general.
- **Goal**: learn the hierarchical embeddings for hypernymy **detection** and **directionality**.
- Procedure: strengthen the distributional similarity of hypernym pairs and generate a distributional **hierarchy** between hyponyms and hypernyms.

CONTRIBUTIONS

- 1. Propose a novel neural model *HyperVec* to learn hierarchical embeddings for hypernymy addressing detection and directionality tasks.
- 2. Present an unsupervised measure to score hypernym relations based on *HyperVec*.
- 3. The *HyperVec* is able to generalize over unseen hypernymy pairs.
- 4. The *HyperVec* outperforms both state-of-the-art unsupervised measures and embedding models.

MODELS

1. Hierarchical Hypernymy:

• Learn hierarchical embeddings in a specific order. The similarity score for hypernymy is higher than the similarity score for other relations:

$$\mathcal{L}_{(w,c)} = \frac{1}{\#(w,u)} \sum_{u \in \mathbb{H}^+(w,c)} \partial(\vec{w},\vec{u})$$

• Learn the distributional hierarchy between hypernyms and hyponyms, as an indicator to differentiate between hypernym and hyponym:

$$\mathcal{L}_{(v,w,c)} = \sum_{v \in \mathbb{H}^{-}(w,c)} \partial(\vec{v}, \vec{w})$$

• Incorporate the Skip-gram with negative sampling model:

$$\mathbf{J}_{(w,c)} = \#(w,c)\log\sigma(\vec{w},\vec{c}) + k$$

• The final objective function is defined as follows

$$\mathbf{J} = \sum_{w \in V_W} \sum_{c \in V_C} \mathbf{J}_{(w,c)} +$$

2. Unsupervised Hypernymy Measure:

- *HyperVec* shows the two following properties:
 - 1. high similarity between hypernyms and hyponyms.
 - 2. hierarchy between hypernyms and their hyponyms.
 - The measure is defined as follows: $HyperScore(u, v) = cos(\vec{u}, \vec{v}) * \frac{\|\vec{v}\|}{\|\vec{u}\|}$

Institute for Natural Language Processing - University of Stuttgart, Germany {nguyenkh, koepermn, schulte, thangvu}@ims.uni-stuttgart.de

 $k \cdot \mathbb{E}_{c_N \sim P_D}[\log \sigma(-\vec{w}, \vec{c}_N)]$

SUPERVISED HYPERNYMY DETECTION AND DIRECTIONALITY							
Dataset	Baseline	HyperScore		BLESS	WBLESS	BIBLESS	
ALution	0.353	0.538	Kiela et al.	0.88	0.75	0.57	
ESS	0.051	0.454	Santus et al.	0.87			
ci&Benotto	0.382	0.574	Veeds et al.	-	0.75	- 0.34	
eds	0.441	0.850	HyperVec	0.44	0.40	0.34	

EXPERIMENTAL SETTINGS

- ENCOW14A corpus \approx 14.5 billion tokens. • Baseline: default SGNS (word2vec).
- 100 dimensions, window 5, negative samples:15, learning rate 0.025.
- Learn HyperVec for nouns and verbs.

GRADED ENTAILMENT

- *HyperLex*: dataset of graded lexical entailment.
- Provides soft lexical entailment on a continous scale e.g *duck-animal* is 5.6 out of 6.0 but reversed *animalduck* is only 1.0.
- 2616 word pairs, seven semantic relations, and two word classes (nouns and verbs).
- We compared HyperScore against the most prominent state-of-the-art models.

GENERALIZING HYPERNYMY I

Motivation: explore HyperVecs potential for generalization

- Rely on a small seed set only, rather than using a large set of training data
- Learn only based on the 200 concepts (and their hyponyms) from the **BLESS** dataset
- Performance measured using Average Precision (AP) ranking measure

Dataset	Baseline	HyperScore
ALution	0.353	0.390
nci/Benotto	0.382	0.448
eeds	0.441	0.585

		T 1 1 1 1		
Measures		Embeddings		
Model	ρ	Model	ρ	
FR	0.279	SGNS	0.205	
DEM	0.180	PARAGRAM	0.320	
SLQS	0.228	OrderEmb	0.191	
WN	0.234	Word2Gauss	0.206	
VIS	0.209	HyperScore	0.540	

GENERALIZING HYPERNYMY II

HyperVec

German	Hyp/All	Hyp/Syn	Hyp/Ant
$DE \rightarrow SGNS$	0.28	0.48	0.40
$DE \rightarrow EN_{HyperScore}$	0.37	0.65	0.47
Italian	Hyp/All	Hyp/Syn	Hyp/Ant
$\text{IT} \rightarrow \text{SGNS}$	0.38	0.50	0.60
$\text{IT} \rightarrow \text{EN}_{HyperScore}$	0.44	0.57	0.65

SUPERVISED CLASSIFICATION

1.00

• **SVM classifier** based on four components:

conc. + diff. + cos + magnitude(hyper)				
Models	BLESS	ENTAILMENT		
Yu et al. (2015)	0.90	0.87		
Tuan et al. (2016)	0.93	0.91		

0.91

0.94

• project (default) representations from any arbitrary language into our modified English HyperVec space

• mapping function between source and target space using least-squares error method

• $DE \rightarrow EN$ and $IT \rightarrow EN$ word translations based on Europarl

• compare the original vs. mapped representation on hypernymy ranking retrieval task