To Split or Not to Split: Composing Compounds in Contextual Vector Spaces

Motivation

- Contextual embeddings can represent more nuanced semantic and syntactic relationships than bag-of-words models
- What makes a good (vectorized) representation of a compound?
- By extension: what structure(s) should the overall vector space have?
- Goals: models that can represent polysemy, composition
- How does sub-word tokenization in contextual embedding models like BERT affect the representation of compound semantics?
- Is it detrimental that sub-word splits often do not correspond to morphological boundaries?

Compound	Base Tokenizer	Re-Trained Tokenizer	Split Tokens
Geschmackssache (matter of taste) 😗 👌	Geschmack $+ ##ss + ##ache$	Geschmack + ##ssache	Geschmack + Sache
Zitronensaft (lemon juice) 🥭 🗃	Zit + ##ronen + ##sa + ##ft	Zitrone $+ ##$ ns $+ ##$ aft	Zitrone + Saft
Murmeltier (marmot) 🦫	Mur + ##mel + ##ti + ##er	Murm + ##eltier	murmeln + Tier
Schauspiel (play [theater]) 💝	Schauspiel	Schauspiel	schauen + Spiel
Klavierspiel (piano music) III	Klavier $+$ ##spiel	Klavier $+ \#\#$ spiel	Klavier + Spiel
Traumbild (vision [imagined]) 😴 🔼	Traum $+ \#\#$ bild	Traum + ##bild	Traum + Bild

Table 1: Example noun compounds and their tokenizations.

Setup

Compound Splitting (Preprocessing)

- The **split** configurations operate on a copy of the training data that has had the SimpleCompoundSplitter [Weller-Di Marco(2017)] run on it.
- It uses word frequencies and POS tags from the training corpus to inform its splits.

Tokenizers

- For two configurations (**voc-rt-DTA** and **split**), we re-allocate the (Word-Piece) tok-enizer's vocabulary based on our training dataset.
- Aligning the granularity of tokens and sub-tokens with in-domain data.
- When the tokenizer is changed, the model can't benefit from any pre-training that was done with the original **base** tokenizer.

Training and Fine-Tuning

- BERT models
- Run for 5 epochs, learning rate 5e–5, on a Nvidia GeForce RTX A6000 for \approx 54 hours.
- Default settings from [Devlin et al.(2019)Devlin, Chang, Lee, and Toutanova] (e.g. 30k vocabulary)
- Maximum sequence length of 128 tokens

Configuration	Pre-Train	DTA	Re-Train	Split
base	∠	X	X	X
base-ft-DTA	V	∠	X	X
voc-rt-DTA	X	∠	V	X
split	X	V	Ø	V

Our code is available at https://gitlab.com/cjenk/representations-composition

Data Description

Deutsches Textarchiv (DTA) (1814-1900 slice)

[Berlin-Brandenburgischen Akademie der Wissenschaften (2022)]

- Curated selection of German texts
- pprox 4M sentences, pprox89M tokens; 10% held out as evaluation data

Compositionality Ratings of Noun Compounds

[Schulte im Walde et al.(2016)Schulte im Walde, Hätty, Bott, and Khvtisavrishvili]

- Compositionality with respect to compound modifier or head (scale of 1-6) rated by experts and by crowd workers
- ullet 185 compounds occur \geq 20 times in DTA training data, remainder excluded

German BERT

■ Trained on Wikipedia, OpenLegalData, news (unknown time period)

In-Context Masked-Language-Model Task

- Fill [MASK] tokens for target compound nouns in eval data.
- Partial: match any token in top 10 predictions; Full: match all tokens (among top 10 predictions for each slot)
- GermaNet path similarity: Top model predictions queried in GermaNet, and a path between that item and a Synset representing the target compound is searched for.
 - Only words that could be found in GermaNet have scores reported in Path Sim. The Precision measure shows the proportion of predicted words that did not return a result from GermaNet.

Configuration	Prediction		GermaNet	
Configuration	Partial	Full	Path Sim	Prec.
base	0.06	0.02	0.37	0.11
base-ft-DTA	0.23	0.15	0.37	0.24
voc-rt-DTA	0.10	0.07	0.35	0.40
split	0.26	0.11	0.36	0.52

Table 3: MLM task evaluations over the four preprocessing / tokenizer configurations.

• **split** model outperforms or competes with the fine-tuned model (**base-ft-DTA**), without benefiting from pre-training.

Vector Space Similarity and Compositionality Ratings

- Decontextualized vector representations for compounds and constituents: prompted without sentence context, representations for multiple tokens averaged.
- Use of either the first, middle or last 4 layers.
- Correlation between

Compositionality ratings:

1: unrelated to
6: totally related to
Annotator average: 5.75 (very related)

BERT Configuration	Layer	Constituent	ρ
base	last	head	0.368
split	first	head	0.313
base	first	head	0.288
base-ft-DTA	last	head	0.287
split	mid	head	0.282
base	mid	head	0.261
split	last	head	0.232

Table 4: Cosine similarity between BERT compound and constituent vectors \sim compositionality ratings.

- ullet No significant correlations found for compound + modifier pairs.
- The **base** models perform the best, with a **split** model showing a stronger correlation with human annotations than the fine-tuned configurations.

References

[Berlin-Brandenburgischen Akademie der Wissenschaften(2022)] Berlin-Brandenburgischen Akademie der Wissenschaften. Deutsches Textarchiv. Grundlage für ein Referenzkorpus der neuhochdeutschen Sprache. https://www.deutschestextarchiv.de/, 2022.

[Devlin et al.(2019)Devlin, Chang, Lee, and Toutanova] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. URL https://aclanthology.org/N19-1423.

[Hamp and Feldweg(1997)] Birgit Hamp and Helmut Feldweg. GermaNet - a lexical-semantic net for German. In *Proceedings of the ACL workshop Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications*, 1997.

[Henrich and Hinrichs(2010)] Verena Henrich and Erhard Hinrichs. GernEdiT - the GermaNet editing tool. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike Rosner, and Daniel Tapias, editors, *Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)*, Valletta, Malta, may 2010. European Language Resources Association (ELRA). ISBN 2-9517408-6-7.

[Schulte im Walde et al.(2016)Schulte im Walde, Hätty, Bott, and Khvtisavrishvili] Sabine Schulte im Walde, Anna Hätty, Stefan Bott, and Nana Khvtisavrishvili. GhoSt-NN: A representative gold standard of German noun-noun compounds. In *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)*, pages 2285–2292, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA). URL https://aclanthology.org/L16-1362.

[Weller-Di Marco(2017)] Marion Weller-Di Marco. Simple compound splitting for German. In *Proceedings of the 13th Workshop on Multiword Expressions (MWE 2017)*, pages 161–166, Valencia, Spain, April 2017. Association for Computational Linguistics. URL https://aclanthology.org/W17-1722.