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Abstract. This paper implements a simple vector space model relying
on lexico-syntactic patterns to distinguish between the paradigmatic re-
lations synonymy, antonymy and hypernymy. Our study is performed
across word classes, and models the lexical relations between German
nouns, verbs and adjectives. Applying nearest-centroid classification to
the relation vectors, we achieve a precision of 59.80%, which significantly
outperforms the majority baseline (χ2, p<0.05). The best results rely on
large-scale, noisy patterns, without significant improvements from vari-
ous pattern generalisations and reliability filters. Analysing the classifi-
cation shows that (i) antonym/synonym distinction is performed signifi-
cantly better than synonym/hypernym distinction, and (ii) that paradig-
matic relations between verbs are more difficult to predict than paradig-
matic relations between nouns or adjectives.

1 Introduction

Paradigmatic relations (such as synonymy, antonymy and hypernymy, cf. [1]),
are notoriously difficult to distinguish because the first-order co-occurrence dis-
tributions of the related words tend to be very similar across the relations. For
example, with regard to the sentence The boy/girl/person loves/hates the cat,
the nominal co-hyponyms boy, girl and their hypernym person as well as the
verbal antonyms love and hate occur in identical contexts, respectively. Accord-
ingly, while there is a rich tradition on identifying paradigmatically related word
pairs in isolation (cf. [2–4] on synonymy, [5–7] on antonymy and [8–10] on hyper-
nymy, among many others), there is little work that has addressed the distinction
between two or more paradigmatic relations (such as [11–13] on distinguishing
synonyms from antonyms).

The current study applies a simple vector space model to the distinction of
paradigmatic relations in German, across the three word classes of nouns, verbs
and adjectives. The vector space model is generated in the tradition of lexico-
syntactic patterns: we rely on the linear sequences between two simplex words
(representing synonyms, antonyms or hypernyms) as vector features in order
to predict the lexical semantic relation between the two words. Our hope is
that the vector space models using such patterns will unveil differences between
the semantic relation pairs. For example, intuitively ‘und’ (and) should be a
1-word pattern to connect synonyms rather than antonyms, while ‘oder’ (or)
should be a 1-word pattern to connect antonyms rather than synonyms. The
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pattern-based approach to distinguish lexical semantic relations has first been
proposed by [8] to identify noun hypernyms; subsequent prominent pattern-based
approaches are [14, 15] who identified noun meronyms; [16] on noun causality ;
[17] on verb similarity, strength, antonymy, enablement, happens-before; [18] on
noun hypernymy, meronymy, succession, reaction, production; and [19] on noun
relational analogies. (See Section 2 for more details on related work.) Our main
questions with regard to the study can be summarised as follows.

– Can lexico-syntactic patterns distinguish between paradigmatic relations?

– Which relations are more difficult to distinguish than others?

– What are the differences across word classes?

2 Related Work

Although there are not many approaches in Computational Linguistics that
explicitely addressed the distinction of paradigmatic semantic relations, there
is a rich tradition on either synonyms or antonyms or hypernyms. Prominent
work on identifying synonyms has been provided by Edmonds who employed
a co-occurrence network and second-order co-occurrence (e.g., [20–22, 2]), and
Curran who explored word-based and syntax-based co-occurrence for thesaurus
construction (e.g., [23, 3]). [24] presented two methods (using patterns vs. bilin-
gual dictionaries) to identify synonyms among distributionally similar words; [4]
compared a standard distributional approach against cross-lingual alignment;
[25] defined a vector space model for word meaning in context, to identify syn-
onyms and the substitutability of verbs. Most computational work addressing
hypernyms was performed for nouns, cf. the lexico-syntactic patterns by [8] and
an extension of the patterns by dependency paths [10]. [26, 27] represent systems
that identify hypernyms in distributional spaces. Examples of approaches that
addressed the automatic construction of a hypernym hierarchy (for nouns) are
[28, 9, 29–31]. Hypernymy between verbs has been addressed by [32–34]. Compa-
rably few approaches have worked on the automatic induction of antonyms. A
cluster of approaches in the early 90s tested the co-occurrence hypothesis, e.g.,
[35, 36, 5]. In recent years there have been approaches to antonymy that were
driven by text understanding efforts, or being embedded in a larger framework
to identify contradiction [37, 6, 7, 38].

Among the few approaches that distinguished between paradigmatic semantic
relations we only know about systems addressing synonyms vs. antonyms.
[24] implemented a similarity measure to retrieve distributionally similar words
for constructing a thesaurus. They used a post-processing step to filter out any
words that appeared with the patterns ‘from X to Y’ or ‘either X or Y’ signifi-
cantly often, as these patterns usually indicate opposition rather than synonymy.
[11] tackled the task within a pattern-based approach (see below). A recent study
by [13], whose main focus was on the identification and ranking of opposites, also
discussed the task of synonym/antonym distinction as a specific application of
their findings.
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Regarding pattern-based approaches to identify and distinguish lexical se-
mantic relations in more general terms, [8] was the first to propose lexico-
syntactic patterns as empirical pointers towards relation instances. Her goal was
to identify pairs of nouns where one of the nouns represented the hypernym of
the other. She started out with a handful of manual patterns such as

NPi {, NPj}* {,} and other NPk

that were clear indicators of the lexical relationship (in this case with NPi and
NPj representing hyponyms of NPk), and used bootstrapping to alternately (i)
find salient instances on the basis of the patterns, and (ii) rely on the enlarged
set of pair instances to identify more salient patterns that are indicators of the
relationship. Hearst demonstrated the success of her approach by comparing the
retrieved noun pairs with WordNet lexical semantic relation pairs.

Girju [16] distinguished pairs of nouns that are in a causal relationship from
those that are not. Differently to Hearst, she only relied on a single pattern

NPi verb NPk

that represented a salient indicator of causation between two nouns (with NPi

representing the cause and NPk the effect) but at the same time was a very am-
biguous pattern. Girju used a Decision Tree on 683 noun pairs and predicted the
existence of a causal relation with a precision of 73.91% and a recall of 88.69%; in
addition, she applied the causation prediction to question answering and reached
a significant improvement. In [15], Girju and colleagues extended the lexical re-
lation work to part–whole relations, applying a supervised, knowledge-intensive
approach, mainly relying on WordNet and semantically annotated corpora. As
in the earlier work, the task was to distinguish positive and negative relation
instances. While they reached an f-score of 82.05%, they noted that many of the
lexico-syntactic patterns were highly ambiguous (i.e., depending on the context
they indicated different relationships).

[17] were the first to apply pattern-based relation extraction to verbs. For five
non-disjoint lexical semantic relations (similarity, strength, antonymy, enable-
ment, happens-before) they manually defined patterns and then queried Google
to estimate joint pair–pattern frequencies for WordNet pairs as well as verb
pairs generated by DIRT [39]. The accuracy for predicting whether a certain
pair undergoes a certain semantic relationship varied between 50% and 100%,
for relation set sizes of 2–41.

[18] developed Espresso, a weakly-supervised system that exploits patterns
in large-scale web data. Similarly to [15], they used generic patterns, but relied
on a bootstrapping cycle combined with reliability measures, rather than man-
ual knowledge resources. Espresso worked in three phases: pattern induction,
pattern selection and instance extraction. Starting with seed instances for the
lexical semantic relations, the bootstrapping cycle iteratively induced patterns
and new relation instances by web queries. Each induction step was combined
with filtering out the least salient patterns/instances by reliability measures.
The approach was applied to five noun-noun lexical semantic relations (hyper-
nymy, meronymy, succession, reaction, production) and reached accuracy values
between 49% and 91%, depending on the data and the relationship.
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The work by Turney also includes approaches to extract and distinguish word
pairs with regard to their lexical semantic relation. He developed a framework
called Latent Relational Analysis (LRA) [40, 41, 19] that relied on corpus-based
patterns between words in order to model relational similarity, i.e., similarity
between word pairs A:B::C:D such that A is related to B as C is related to D.
In his framework, a vector space model was populated with word pairs as the
targets and patterns as the pair features. The patterns were derived from web
corpora, and the cosine was used to measure the relational similarity between
two word pairs. Turney applied a range of modifications to his basic setup, in-
cluding a step-wise generalisation of the patterns by wild-cards instead of specific
word types; extension of target pairs by synonyms to the words within a pair,
as determined by Lin’s thesaurus [42]; feature reduction by Singular Value De-
composition; etc. LRA has been applied to predict analogies in semantic relation
pairs, to classify noun-modifier pairs according to the noun-noun semantic re-
lation; to identify TOEFL synonyms; to answer SAT questions; to distinguish
synonyms and antonyms; among others.

3 Paradigmatic Relation Datasets

The dataset of paradigmatic relations used in our research has been collected
independently of the specific classification task in this paper. Based on a selec-
tion of semantic relation targets across the three word classes nouns, verbs and
adjectives, we collected antonyms, synonyms and hypernyms for these targets
via crowdsourcing. The following steps describe the creation of the dataset in
more detail.

1. Target source, semantic classes and senses: We selected GermaNet1

[43–45] as the source for our semantic relation targets. GermaNet is a lexical-
semantic taxonomy for German that defines semantic relations between word
senses, in the vein of the English WordNet [46]. Relying on GermaNet version
6.0 and the respective JAVA API, we generated lists of all nouns, verbs
and adjectives, according to their semantic class (as represented by the file
organisation), and also extracted the number of senses for each lexical item.

2. Target frequencies: Relying on the German web corpus sdeWaC (version
3), we extracted corpus frequencies for all lexical items in the GermaNet files,
if available. The sdeWaC corpus [47] is a cleaned version of the German web
corpus deWaC created by the WaCky group [48]. It contains approx. 880
million words with lemma and part-of-speech annotations [49] and can be
downloaded from http://wacky.sslmit.unibo.it/.

3. Target selection: Using a stratified sampling technique, we randomly se-
lected 99 nouns, 99 adjectives and 99 verbs from the GermaNet files. The
random selection was balanced for

1 www.sfs.uni-tuebingen.de/lsd/
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(a) the size of the semantic classes,2 accounting for the 16 semantic
adjective classes and the 23 semantic classes for both nouns and verbs;

(b) three polysemy classes according to the number of GermaNet senses:
I) monosemous, II) two senses and III) more than two senses;

(c) three frequency classes (type frequency in sdeWaC):
I) low (200–2,999), II) mid (3,000–9,999) and III) high (≥10,000).

The total number of 99 targets per word class resulted from distinguishing
3 sense classes and 3 frequency classes, 3 × 3 = 9 categories, and selecting
11 instances from each category, in proportion to the semantic class sizes.

4. Semantic relation generation: An experiment hosted by Amazon Me-
chanical Turk (AMT)3 collected synonyms, antonyms and hypernyms for
each of our 3 × 99 targets. For each word class and semantic relation, the
targets were distributed randomly over 9 batches including 9 target each.
In order to control for spammers, we in addition included two German fake
words into each of the batches, in random positions of the batches. If partic-
ipants did not recognise the fake words, all of their data were rejected. We
asked for 10 participants per target and relation, resulting in 3 word classes
× 99 targets × 3 relations × 10 participants = 8, 910 target–response pairs.
Table 1 shows some examples of the generated target–response pairs across
the word classes and relations. The examples are accompanied by the strength
of the responses, i.e., the number of participants who provided the response.

Table 1. Examples of target–response pairs across word classes and semantic relations.

ANT SYN HYP

NOUN
Bein/Arm (leg/arm) 10 Killer/Mörder (killer) 8 Ekel/Gefühl (disgust/feeling) 7
Zeit/Raum (time/space) 3 Gerät/Apparat (device) 3 Arzt/Beruf (doctor/profession) 5

VERB
verbieten/erlauben (forbid/allow) 10 üben/trainieren (practise) 6 trampeln/gehen (lumber/walk) 6
setzen/stehen (sit/stand) 4 setzen/platzieren (place) 3 wehen/bewegen (wave/move) 3

ADJ
dunkel/hell (dark/light) 10 mild/sanft (smooth) 9 grün/farbig (green/colourful) 5
heiter/trist (cheerful/sad) 2 bekannt/vertraut (familiar) 4 heiter/hell (bright/light) 1

We decided in favour of this very specific dataset and against directly using
the GermaNet relations, for the following reason. Although GermaNet aims to
include examples of all three relation types for each of the three parts-of-speech
(nouns, verbs, adjectives), coverage of these can be low in places, as depend-
ing on the part-of-speech some semantic relations apply more naturally than
others [50]. For example, the predominant semantic relation for nouns is hyper-
nymy, whereas the predominant semantic relation for adjectives is antonymy. As
a result, GermaNet does not always provide all three relations with regard to a
specific lexical unit.

2 For example, if an adjective GermaNet class contained a total of 996 word types,
and the total number of all adjectives over all semantic classes was 8,582, and with
99 stimuli collected in total, we randomly selected 99 ∗ 996/8, 582 = 11 adjectives
from this semantic class.

3 https://www.mturk.com
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4 Experiments

The goal of our experiments was to distinguish between the three paradigmatic
relations antonymy, synonymy, hypernymy. The following subsections describe
the setup of the experiments (Section 4.1) and the results (Section 4.2).

4.1 Setup

Dataset: The experiments rely on a subset of the collected pairs as described in
the previous section, containing those target–response pairs that were provided
at least twice (to ensure reliability) and without ambiguity4 between the rela-
tions. Table 2 shows the distribution of the target–response pairs across classes
and relations. The target–relation pairs were randomly divided into 80% training
pairs and 20% test pairs with regard to each class–relation combination.

Table 2. Target–response pairs.

ANT SYN HYP

NOUN 95 90 97
VERB 75 76 74
ADJ 62 62 61

In addition to using this dataset, the overall best experiments were performed
on a variant that investigated the influence of polysemy among the targets and
responses. We relied on the same dataset but distinguished between monosemous
vs. polysemous target–response pairs. I.e., we divided the training pairs and
the test pairs into two sets for each class–relation combination, one containing
only pairs where both the target and the response were monosemous, and one
containing only pairs where either the target or the response was polysemous,
according to the definitions in GermaNet. (The third case, that both target and
response are polysemous, did not show up in our dataset.)

Patterns: For all our target–response pairs, we extracted the lexico-syntactic pat-
terns between the targets and the responses. The basic patterns (to be refined;
see below) relied on raw frequencies of lemmatised patterns. Since hypernymy re-
quires the definition of pattern direction, all our patterns were marked by their
directionality. As corpus resource, we relied on WebKo, a predecessor version
of the sdeWaC (cf. Section 3), which comprises more data (approx. 1.5 billion
words in comparison to 880 million words) but is less clean. We found a to-
tal of 95,615/54,911/21,350 pattern types for the nouns/verbs/adjectives, when
neither the length of the patterns was restricted or any kind of generalisation
applied. The basic patterns were varied as follows.

4 Ambiguity between the relations arose when the same response was provided for a
target with regard to two semantic relations. For example, Maschine ‘machine’ was
provided both as a synonym and a hypernym of the noun Gerät ‘device, machine’.
We disregarded such ambiguous cases in this paper.
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1. Morpho-syntactic generalisation: The patterns were generalised by (i) sub-
stituting each common noun, proper name, adjective and determiner by its
part-of-speech; (ii) deleting all non-alphabetic characters from the patterns.

2. Mutual information variants: We used point-wise mutual information values
(pmi) [51, 18] instead of raw pattern frequencies, and implemented two vari-
ants: (i) pmi(relation,pattern) and (ii) pmi(pair,pattern), thus enforcing the
strengths of patterns that were (i) strong indicators of a specific relation or
(ii) strong indicators for specific pairs.

3. Length restriction: The lengths of the patterns were restricted to maximally
1, 2, . . . 100 words between the targets and the responses.

4. Frequency restriction: Only patterns with a frequency of at least 1, 2, . . . 10,
20, 50, 100 were taken into account, ignoring low-frequent patterns.

5. Reliability: The least reliable patterns were deleted from the vector space
dimensions. Reliability was determined as in [18]:

reliability(pattern) =

∑
i∈I(pmi(i,pattern)

maxpmi
)× reliabilityi(i)

|I|
(1)

with i representing a pair instance and I the set of all pairs. The value of
reliabilityi was instantiated by the strength of the pair in our dataset.

Classification and Evaluation: We implemented a simple5 nearest-centroid clas-
sification (also known as Rocchio Classifier [52]) to distinguish between the
paradigmatic relation pairs. For each word class, we calculated three mean vec-
tors, one for each lexical semantic relation (antonymy, synonymy, hypernymy),
as based on the training pairs. We then predicted the semantic relation for the
test pairs in each word class, by choosing for each test pair the most similar
mean vector, as determined by cosine.

This 3-way classification to distinguish between the three paradigmatic re-
lations was performed across the various conditions described above, to identify
the types and variations of patterns that were most useful. In a follow-up step we
applied the most successful condition to 2-way classifications that aimed to dis-
tinguish between two paradigmatic relations (antonyms vs. synonyms, antonyms
vs. hypernyms, synonyms vs. hypernyms). The 2-way classifications were to pro-
vide insight into more or less difficult relation pairings.

All predictions were evaluated by precision, the proportion of predictions we
made that were correct. Since many variations of the pattern features effected
the number of patterns, we also calculated recall, the proportion of test pairs
for which we could make a prediction based on the vector dimensions. Harmonic
f-score then helped us to decide about the overall quality of the conditions in
relation to each other.

5 We also applied standard approaches that were relevant to the task, such as Decision
Trees and k-Nearest-Neighbour, but our simple approach outperformed them.
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4.2 Results

Table 3 shows the results of the pattern-based distinctions in the 3-way relation
classification experiments. In the first column the result relies on the basic setup,
i.e., using all unaltered patterns as vector features. This basic result outperforms
the majority baseline (44%) significantly6 (p < 0.05), and is at the same time (a)
significantly better than relying on the part-of-speech generalisation (p < 0.1),
(b) not significantly better than relying on the alphanumeric generalisation and
(c) significantly better than the pmi versions of the patterns. Interestingly, opti-
mising the patterns by disregarding very long patterns or disregarding patterns
with low frequencies does not improve the basic setup: the best results of these
optimisations (see columns length and freq in Table 3) are exactly the same.

Applying the basic setup to monosemous (mono) vs. polysemous (poly) rela-
tion pairs demonstrates that (a) the lexical semantic relations for monosemous
word pairs are easier to predict than for pairs involving polysemy (precision:
64.71 vs. 53.01); (b) the polysemous word pairs activate more pattern types
(recall: 45.83 vs. 36.67). Both mono and poly are significantly better than the
baseline (p < 0.1).

Table 3. 3-way classification results across conditions.

Pattern variations Polysemy

basic
generalisations

length freq
pmi

mono poly
pos alpha rel,pat pair,pat

precision **59.80 46.85 52.94 **59.80 **59.80 48.04 35.29 *64.71 *53.01
recall 48.41 41.27 42.86 48.41 48.41 38.89 28.57 36.67 45.83
f-score 53.51 43.88 47.37 53.51 53.51 42.98 31.58 46.81 49.16

Figures 1 to 3 show the impact of reducing the number and types of patterns
with regard to length, frequency and reliability. Figure 1 demonstrates that
reducing the vector space to short patterns of maximally 1, 2, . . . , 10 words
(i.e., deleting very long and specific patterns that appeared between targets and
responses) does almost have no impact on the prediction results. In fact, all
patterns seem to provide salient information for the classification, as precision,
recall and f-score all monotonically increase when including more and longer
patterns. The difference between the best result (including all patterns) and
the worst result (including only patterns of length 1) is however not significant.
Figure 2 demonstrates that deleting infrequent patterns from the vector space
(i.e., deleting patterns with a frequency of less than 2, 3, . . . , 100) does also have
no strong impact on the prediction results. Even low-frequent patterns seem to
provide salient information for the classification, as precision, recall and f-score
all monotonically decrease when including only more frequent patterns. Again,
the difference between the best result (including all patterns) and the worst
result (including only high-frequent patterns) is not significant. Figure 3 shows
the effect of deleting x% of the most unreliable patterns, with x = 0.01%, 0.02%,

6 All significance tests have been performed with χ2. Significance levels are marked at
the precision values with *p ≤ 0.1, **p ≤ 0.05 and ***p ≤ 0.01, if applicable.
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Fig. 1. Deleting long patterns.

Fig. 2. Deleting infrequent patterns.

Fig. 3. Deleting unreliable patterns.
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. . . , 1%, 2%, . . . , 10%, 15%, 20%, . . . , 95%. The plot demonstrates that deleting
unreliable patterns does have an impact on the quality of the prediction. Most
notably, precision drops severely from 59.80% to 51.09% when deleting the most
unreliable patterns, and goes up to 65% when only using the 5-10% most reliable
patterns. Recall and f-score monotonically decrease when deleting patterns. Even
unreliable patterns seem to provide salient information for the classification. At
the same time, we achieved our best precision with 5-10% of the patterns only.

Table 4 shows the results of the pattern-based distinctions in the 2-way re-
lation classification experiments. As the baselines are different,7 we list them
in the table. The table demonstrates that the pair-wise distinction between the
relation pairs works differently well for the three type. The antonym/synonym
distinction performed best, the synonym/hypernym distinction performed worst.
While both the antonym/synonym and the antonym/hypernym distinction are
significantly better than the baseline, the synonym/hypernym distinction is not.

Table 4. 2-way classification results.

ANT/SYN ANT/HYP SYN/HYP

baseline 55.00 50.00 55.00
precision ***78.79 **68.06 63.64
recall 64.20 55.68 50.60
f-score 70.75 61.25 56.38

Table 5 shows the confusion matrix for the 2-way relation distinctions, along
with the respective precision scores. The all column corresponds to the results
in Table 4, the other columns distribute these counts over the word classes.
Across the three word classes (all), the distinction between antonyms and syn-
onyms is significantly better (p < 0.1) than the distinction between synonyms
and hypernyms. The other differences (ANT/SYN vs. ANT/HYP; ANT/HYP
vs. SYN/HYP) are not significant. So the most difficult relation distinction to
predict is synonyms vs. hypernyms.

The confusion matrix demonstrates where the incorrect predictions mainly
come from: in the antonym/hypernym distinction, half of the hypernyms were
predicted as antonyms; in the synonym/hypernym distinction, even more than
half of the hypernyms were predicted as synonyms. While there are also other
incorrect predictions, these two cases are striking.

Looking at the results with regard to the three word classes, the predictions of
verb relations were in all 2-way distinctions worse than those for nouns and adjec-
tives. The differences for verbs vs. nouns on predicting the synonym/hypernym
distinction is significant (p < 0.05), the other differences are not significant. The
noun and adjective relation prediction is similarly good, without remarkable dif-
ferences, even though one might have expected that the predictions of the ‘core’
relations (synonymy and hypernymy for nouns; synonymy and antonymy for
adjectives) should be better with regard to the respective word class.

7 Since there are different amounts of antonym/synonym, antonym/hypernym and
synonym/hypernym pairs in the final dataset, the majority baseline varies.
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Table 5. Confusion matrix (2-way relation distinction).

NOUN VERB ADJ all
ANT SYN prec ANT SYN prec ANT SYN prec ANT SYN prec

ANT 15 2
77.42

7 3
70.59

8 1
88.89

30 6
78.79

SYN 5 9 2 5 1 8 8 22

ANT HYP prec ANT HYP prec ANT HYP prec ANT HYP prec

ANT 15 2
74.19

8 2
54.55

8 1
73.68

31 5
68.06

HYP 6 8 8 4 4 6 18 18

SYN HYP prec SYN HYP prec SYN HYP prec SYN HYP prec

SYN 13 1
75.00

5 2
42.11

8 1
68.42

26 4
63.64

HYP 6 8 9 3 5 5 20 16

5 Discussion

The results in the previous section demonstrated that a pattern-based vector
space model is able to distinguish between paradigmatic relations: The precision
of our basic pattern set in the 3-way relation classification (59.80%) significantly
outperformed the majority baseline, p<0.05. In the 2-way relation classification,
the same patterns achieved precision values of 78.79% for antonym/synonym dis-
tinction (significant, p<0.01), 68.06% for antonym/hypernym distinction (signif-
icant, p<0.05), and 63.64% for synonym/hypernym distinction (not significant).

None of the variations to the patterns we performed resulted in significant im-
provements of the basic setup. Even more, generalisations of the patterns by (i)
replacing words with their parts-of-speech or by (ii) deleting all non-alphabetic
characters made the results worse, in case (i) even significantly (p < 0.1). Simi-
larly, the precision results decreased (in some cases even significantly) when we
applied mathematical variations and filters to the patterns, by (i) replacing the
pattern frequencies by point-wise mutual information scores as well as when (ii)
incorporating a filter for unreliable patterns as adopted from [18].

On the one hand, it is not surprising that generalisations of patterns are
not successful because it is very difficult to identify –within a large-scale vector
space– those aspects of patterns that contribute to subtle distinctions between
relation pairs, and those that will not. For example, if we generalise over specific
words by their parts-of-speech this might be helpful in some cases (e.g., we find
’und zwei’ (and two) as well as ’und sieben’ (and seven), where we could gen-
eralise over the cardinal number) but contra-productive in others (e.g., we find
’Haar und’ (hair and) as strong indicator for adjective antonyms and ’Land und’
(country and) as strong indicator for adjective hypernyms, where generalising
over nouns would delete the relation-specific distinction). Similarly, generalising
over punctuation might be helpful in some cases (e.g., we find ’und d Arme
immer’ (lemmatised version of ’und die Armen immer’) and the poor always as
well as ’, d Arme immer’ , the poor always as strong indicators for adjective
antonyms) but contra-productive in others (e.g., ’/’ is a strong indicator for ad-
jective antonymy, while ’(’ is a strong indicator for adjective hypernymy, and ’,’
is a strong indicator across all adjectival relations).
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On the other hand, we would have expected pmi variants to have a positive
effect on the prediction strength of the patterns because they should be able
to strengthen the contributions of more salient and weaken the contributions
of less salient patterns or pairs. Of course, it is possible that our experimental
setup does not sufficiently enforce strong features to outplay weak features. In
previous work, many of the existing approaches [8, 16, 15, 18] worked within a
bootstrapping cycle, i.e., (1) starting with a small set of clearly distinguishing
patterns for a small set of prototypical relation instances, (2) increasing the set of
relation pairs on the basis of these patterns and large-scale corpus data, (3) using
the new pairs to identify new patterns, (4) filtering the patterns for reliability,
etc. It was beyond the scope of this study but might be interesting to implement
a variant of our setup that incorporates a bootstrapping cycle. However, we
would like to emphasise that we doubt that bootstrapping improves our results
because our experiments clearly demonstrated that the salient information in the
patterns lies within infrequent as well as frequent patterns, and within short as
well as long patterns, and within less reliable as well as strongly reliable patterns.
This is in accordance with [19] who demonstrated that large-scale and potentially
noisy patterns outperform feature vectors with carefully chosen patterns.

It is difficult to numerically compare our results with related work on pattern-
based relations because (i) many previous approaches have tried to identify se-
mantic relations pairs, rather than distinguish them [8, 16, 17, 15, 18], and (ii)
most of the approaches focused on one semantic relation at the same time [8,
16–18]. Concerning (i), our approach is different in that we distinguish between
relation pairs; we could however also apply our classification to identify addi-
tional relation pairs, assuming that we first extract a set of candidate pairs.
Concerning (ii), our approach is different in that we focus on 2 or 3 semantic
relations at the same time, and in addition the distributional differences between
paradigmatic relations are subtle (cf. Section 1). With regard to both (i) and
(ii), Turney’s work is most similar to ours. [11] achieved a precision of 75% on a
set of 136 synonym/antonym questions, with a majority class baseline of 65.4%,
in comparison to our synonym/antonym distinction achieving 78.79% with a
majority baseline of 55%.

6 Conclusion

This paper presented a vector space model relying on lexico-syntactic patterns to
distinguish between the paradigmatic relations synonymy, antonymy and hyper-
nymy. Our best results achieved a precision score of 59.80%, which significantly
outperformed the majority baseline. Interestingly, our original noisy patterns
performed better than any kind of standard generalisation or reliability filter.
We also showed that (i) antonym/synonym distinction is performed significantly
better than synonym/hypernym distinction; (ii) paradigmatic relations between
verbs are more difficult to predict than paradigmatic relations between nouns
or adjectives; and (iii) paradigmatic relations between monosemous words are
easier to predict than those involving a polysemous word.
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