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Abstract
This work determines the degree of composition-
ality of German particle verbs by two soft cluster-
ing approaches. We assume that the more compo-
sitional a particle verb is, the more often it appears
in the same cluster with its base verb, after applying
a probability threshold to establish cluster member-
ship. As German particle verbs are difficult to ap-
proach automatically at the syntax-semantics inter-
face, because they typically change the subcategori-
sation behaviour in comparison to their base verbs,
we explore the clustering approaches not only with
respect to technical parameters such as the number
of clusters, the number of iterations, etc. but in ad-
dition focus on the choice of features to describe the
particle verbs.

1 Introduction
A multi-word expression (MWE) is a combination
of two or more simplex words,1 covering com-
pounds as well as collocations. From a seman-
tic point of view, multi-word expressions are either
considered as idiosyncratic (Sag et al., 2002; Villav-
icencio et al., 2005; Fazly and Stevenson, 2008),
i.e., non-compositional, or alternatively the MWE
compositionality is assumed to be on a continuum
between entirely compositional/transparent and en-
tirely non-compositional/opaque expressions. We
conform to the latter view, and consider multi-word
expressions as a composition of simplex words
which may or may not be entirely predictable on

1Note that the definition of multi-words is not straightfor-
ward or agreed upon Lieber and Stekauer (2009a). Our defi-
nition is one possibility among many, but has generally been
adopted by computational linguistics.

the basis of standard rules and lexica. This view is
in line with recent work on multi-word expressions,
e.g., McCarthy et al. (2003; 2007), and also the-
oretical considerations about compositionality, cf.
Kavka (2009).

Addressing the compositionality of multi-word
expressions is a crucial ingredient for lexicography
(concerning the question of whether to lexicalise a
MWE) and Natural Language Processing applica-
tions (to know whether the expression should be
treated as a whole, or through its parts, and what
the expression means). We are interested in deter-
mining the degree of compositionality of one em-
pirically challenging class of German multi-word
expressions, i.e., German particle verbs, productive
compositions of a base verb and a prefix particle.
The work relies on a Studienarbeit by the first au-
thor (Kühner, 2010).

We propose two clustering approaches to address
the compositionality of particle verbs. The core idea
is that the compositionality of the multi-word ex-
pressions is determined by the co-occurrence of the
particle verbs and the respective base verbs within
the same clusters. I.e., we assume that the more
compositional a particle verb is, the more often it
appears in the same cluster with its base verb. Note
that our idea restricts the compositionality of multi-
word expressions to the relationship between parti-
cle and base verb and thus for the time being ignores
the contribution of the particle. As we are relying
on soft clustering approaches, cluster membership is
represented by a probability. We transfer the prob-
abilistic membership into a binary membership by
establishing a membership cut-off, i.e., only verbs
above a certain probability threshold are considered
to be cluster members.



German particle verbs are an empirical challenge
because they are difficult to approach automatically
at the syntax-semantics interface: they typically
change the subcategorisation behaviour in compari-
son to their base verbs, cf. Section 2. Consequently,
we explore the clustering approaches not only with
respect to technical parameters such as the number
of clusters, the number of iterations, etc. but in ad-
dition focus on the choice of features to describe
the particle verbs. The compositionality scores as
predicted by the clustering approaches are evaluated
by comparison against human judgements, using the
Spearman rank-order correlation coefficient.

The remainder of the paper is organised as fol-
lows. Section 2 introduces the reader into German
particle verbs. Following an overview of the clus-
tering approaches in Section 3, we then describe the
experiments (Section 4) and the results (Section 5).

2 German Particle Verbs
German particle verbs (PVs) are productive com-
positions of a base verb (BV) and a prefix par-
ticle, whose part-of-speech varies between open-
class nouns, adjectives, and verbs, and closed-class
prepositions and adverbs. This work focuses on
preposition particles.

Particle verb senses are assumed to be on a con-
tinuum between transparent (i.e. compositional)
and opaque (i.e. non-compositional) with respect
to their base verbs. For example, abholen ‘fetch’
is rather transparent with respect to its base verb
holen ‘fetch’, anfangen ‘begin’ is quite opaque with
respect to fangen ‘catch’, and einsetzen has both
transparent (e.g. ‘insert’) and opaque (e.g. ‘begin’)
verb senses with respect to setzen ‘put/sit (down)’.
Even though German particle verbs constitute a sig-
nificant part of the verb lexicon, most work is de-
voted to theoretical investigations, such as (Stiebels,
1996; Lüdeling, 2001; Dehé et al., 2002). To our
knowledge, so far only (Aldinger, 2004; Schulte im
Walde, 2004; Schulte im Walde, 2005; Rehbein and
van Genabith, 2006; Hartmann et al., 2008) have ad-
dressed German particle verbs from a corpus-based
perspective.

This work addresses the degrees of composition-
ality of preposition particle verbs by clustering and
then comparing the cluster memberships of the par-
ticle and base verbs. Clustering particle verbs and
base verbs in turn requires the definition of empir-
ical properties. This work relies on an automatic
induction of distributional features from large-scale

German corpus data, cf. Section 4.1. While in-
ducing the distributional information is not diffi-
cult per se, German particle verbs face an empir-
ical challenge: In general, subcategorisation prop-
erties are a powerful indicator of verb semantic
relatedness and could thus point us towards the
strength of relatedness between particle and base
verbs (Dorr and Jones, 1996; Schulte im Walde,
2000; Korhonen et al., 2003; Schulte im Walde,
2006; Joanis et al., 2008, among others) because
distributional similarity with respect to subcategori-
sation frames (even by themselves) corresponds to
a large extent to semantic relatedness. German
particle verbs are difficult to approach automati-
cally at the syntax-semantics interface, however, be-
cause they typically change the subcategorisation
behaviour in comparison to their base verbs. For
example, even though anlächeln in example (1)2

taken from Lüdeling (2001) is strongly composi-
tional, its subcategorisation properties differ from
those of its base verb; thus, automatic means that
rely on subcategorisation cues might not recognise
that anlächeln is semantically related to its base
verb. Theoretical investigations (Stiebels, 1996) as
well as corpus-based work (Aldinger, 2004) have
demonstrated that such changes are quite regular,
independent of whether a particle verb sense is com-
positional or not.

(1) Sie lächelt.
‘She smiles.’
*Sie lächelt [NPacc ihre Mutter].
‘She smiles her mother.’
Sie lächelt [NPacc ihre Mutter] an.
‘She smiles her mother at.’

We believe that there are basically two strate-
gies to address the empirically challenging class
of multi-word expression from a semantic per-
spective: (i) avoid subcategorisation-based distribu-
tional features at the syntax-semantics interface, or
(ii) incorporate the syntax-semantics subcategorisa-
tion transfer into the distributional information, cf.
(Aldinger, 2004; Hartmann et al., 2008). This paper
adheres to strategy (i) and basically excludes the no-
tion of syntax from the distributional descriptions.
For comparison reasons, we include an experiment
that incorporates syntactic functions.

2Note that German particle verbs are separable, in contrast
to the class of German prefix verbs that share many properties
with the class of particle verbs but are inseparable (among other
differences).



3 Clustering Approaches: LSC and PAC

Two soft clustering approaches were chosen to
model the compositionality of German parti-
cle verbs, Latent Semantic Classes (LSC) and
Predicate-Argument Clustering (PAC). Using soft
clustering, each clustering object (i.e., the particle
and base verbs) is assigned to each cluster with a
probability between 0 and 1, and all probabilities
for a certain verb over all clusters sum to 1. Cluster
membership is then determined according to a prob-
ability threshold, cf. Section 4.2. In the following,
we introduce the two clustering approaches.

3.1 Latent Semantic Classes

The Latent Semantic Class (LSC) approach is an
instance of the Expectation-Maximisation (EM) al-
gorithm (Baum, 1972) for unsupervised training
on unannotated data, originally suggested by Mats
Rooth (Rooth, 1998; Rooth et al., 1999). We use
an implementation by Helmut Schmid. LSC cluster
analyses define two-dimensional soft clusters which
are able to generalise over hidden data. They model
the selectional dependencies between two sets of
words participating in a grammatical relationship.
LSC training learns three probability distributions,
one for the probabilities of the clusters, and a joint
probability distribution for each lexical class par-
ticipating in the grammatical relationship, with re-
spect to cluster membership, thus the two dimen-
sions. In our case, one dimension are the verbs
(particle and base verbs), and one dimension are
corpus-based features. Equation (2) provides the
probability model for verb–feature pairs (v and f ,
respectively). Note that in our case the second
dimension is crucial for the cluster analysis, but
for determining the compositionality of the parti-
cle verbs, we only consider the cluster probabilities
of dimension one, i.e., the particle and base verbs.
Table 1 presents an example cluster that illustrates
the verb and the feature dimensions, presenting the
most probable verbs and direct object nouns within
the cluster. The cluster is a nice example of com-
positional particle verbs (verschicken, abschicken,
zuschicken) clustered together with their base verb
(schicken).

p(v, f) =
∑

c∈cluster

p(c, v, f)(2)

=
∑

c∈cluster

p(c) p(v|c) p(f |c)

3.2 Predicate-Argument Clustering

Predicate-Argument Clustering (PAC) is an exten-
sion of the LSC approach that explicitly incorpo-
rates selectional preferences (Schulte im Walde et
al., 2008). The PAC model provides a combination
of the EM algorithm and the Minimum Description
Length (MDL) principle (Rissanen, 1978), and re-
fines the second dimension by explicit generalisa-
tions based on WordNet (Fellbaum, 1998) and the
MDL principle. For example, instead of high prob-
abilities of the nouns Milch ‘milk’, Kaffee ‘coffee’,
Tee ‘tea’ within dimension two of a cluster, PAC
might identify the generalising WordNet concept
Getränk ‘beverage’. Note that with PAC the sec-
ond dimension only makes sense if WordNet pro-
vides useful generalisation information concerning
that dimension, which effectively restricts the word
class of the second dimension to nouns.

The PAC model is estimated through the joint
probability of a verb v, a subcategorisation frame
type f , and the complement realisations n1, ..., nk,
cf. Equation (3). In addition to the LSC parameters
in Equation (2), p(r|c, f, i) is the probability that the
ith complement of frame f in cluster c is realised by
WordNet (wn) concept r, and p(n|r) is the proba-
bility that the WordNet concept r is realised by the
complement head n. Table 2 presents an example
cluster where dimension two is a generalisation of
WordNet concepts over PP arguments. Dimension
one contains the most probable verbs in the clus-
ter; dimension two is a selection of the most proba-
ble concepts from different hierarchical levels, plus
example instances. As we are working on German
data, we use the German Wordnet, i.e., GermaNet
(Kunze, 2000).

p(v, f, n1, ..., nk) =
∑

c

p(c) p(v|c) p(f |c) ∗

k∏
i=1

∑
r∈wn

p(r|c, f, i) p(ni|r)(3)

4 Clustering Experiments

To setup the clustering experiments, we need to
specify the linguistic parameters (i.e., the choice of
verbs and features), and the technical parameters,
cf. Sections 4.1 and 4.2, respectively. The evalua-
tion is described in Section 4.3.



dimension 1: verbs dimension 2: direct object nouns
schicken ‘send’ Artikel ‘article’
verschicken ‘send’ Nachricht ‘message’
versenden ‘send’ E-Mail ‘email’
nachweisen ‘prove’ Brief ‘letter’
überbringen ‘deliver’ Kind ‘child’
abonnieren ‘subscribe to’ Kommentar ‘comment’
zusenden ‘send’ Newsletter ‘newsletter’
downloaden ‘download’ Bild ‘picture’
bescheinigen ‘attest’ Gruß ‘greeting’
zustellen ‘send’ Soldat ‘soldier’
abschicken ‘send off’ Foto ‘photo’
zuschicken ‘send’ Information ‘information’

Table 1: Example LSC cluster.

dimension 1: verbs dimension 2: WN concepts over PP arguments
steigen ‘increase’ Maßeinheit ‘measuring unit’
zurückgehen ‘decrease’ e.g., Jahresende ‘end of year’
geben ‘give’ Geldeinheit ‘monetary unit’
rechnen ‘calculate’ e.g., Euro ‘Euro’
wachsen ‘grow’ Transportmittel ‘means of transportation’
ansteigen ‘increase’ e.g., Fahrzeug ‘automobile’
belaufen ‘amount to’ Gebäudeteil ‘part of building’
gehen ‘go’ e.g., Dach ‘roof’
zulegen ‘add’ materieller Besitz ‘material property’
anheben ‘increase’ e.g., Haushalt ‘budget’
kürzen ‘reduce’ Besitzwechsel ‘transfer of property’
stehen ‘stagnate’ e.g., Zuschuss ‘subsidy’

Table 2: Example PAC cluster.

4.1 Data
As corpus data basis, we relied on approx. 560
million words from the German web corpus deWaC
(Baroni and Kilgarriff, 2006), after the corpus was
preprocessed by the Tree Tagger (Schmid, 1994)
and by a dependency parser (Schiehlen, 2003).
The corpus portion contains more than 50,000 verb
types (from verb-first, verb-second and verb-final
clauses), which we restricted to those with a fre-
quency above 1,000 and below 10,000, to avoid
very low and very high frequent types, as they no-
toriously produce noise in clustering. In addition,
we made sure that all verbs needed in the evalua-
tion were covered, ending up with 2,152 verb types
(comprising both particle and base verbs). The latter
step, however, included some low and high frequent
verbs, as many particle verbs are low frequent, and
many base verbs are high frequent.

Concerning the feature choice, we relied on the
main verb argument types, covering subjects, direct
objects and pp objects. I.e., we used as input verb–
noun pairs where the nouns were (a) subjects, or (b)
objects, or (c) pp objects of the verbs. We used the
information separately and also (d) merged without
reference to the syntactic function, as we largely ig-
nored syntax. The underlying assumption for this
rather crude simplification refers to the observa-
tion that the selectional preferences of particle verbs
overlap with those of semantically similar verbs, but
not necessarily in identical syntactic functions, cf.
Schulte im Walde (2004). In comparison to (d),
we (e) merged the pairs, while keeping the refer-
ence to the syntactic functions. The feature choice
–more specifically: comparing (d) with (e)– is based
on that in Schulte im Walde (2005). We wanted
to compare the individual argument types with re-



spect to their potential in addressing particle verb
compositionality despite the syntax transfer hurdle.
As direct objects and pp objects often remain the
same function after the syntax-semantics particle–
base transfer, they were supposed to provide more
interesting results than subjects, which often ful-
fil more general roles. In addition, the syntax-
unmarked input was supposed to provide better re-
sults than the syntax-marked input, because of the
syntax transfer hurdle. The input variants are re-
ferred to as (a) subj, (b) obj, (c) pp, (d) n-syntax,
and (e) n+syntax. Table 3 lists the number of input
tokens and types according to the feature choices.

input tokens types
subj 2,316,757 368,667
obj 3,532,572 446,947
pp 4,144,588 706,377
n+syntax 9,993,917 1,346,093
n-syntax 9,993,917 1,036,282

Table 3: Input data.

4.2 Method
The data were used for both LSC and PAC, with mi-
nor formatting differences. There are basically two
input dimensions (verb and argument head) as de-
scribed in Section 3. When including the function
markers, they were added to the (second) noun di-
mension, e.g., anfangen–Job ‘begin–job’ would be-
come anfangen–obj:Job.

As we wanted to explore the clustering potential
with respect to various parameters, we varied the
number of clusters: 20, 50, 100, and 200. In addi-
tion, we varied the probability to determine cluster
membership: 0.01, 0.001, 0.0005, and 0.0001, thus
directly influencing precision and recall, as higher
probability thresholds include less verbs per cluster.
All cluster analyses were trained over 200 iterations
for LSC and 100 iterations for PAC, evaluating the
results after 50, 100 (and 200) iterations.

4.3 Evaluation
For the evaluation of the experiments, we relied on a
gold standard created by Hartmann (2008). She had
collected compositionality judgements for 99 Ger-
man particle verbs across 11 different preposition
particles, and across 8 frequency bands (5, 10, 18,
30, 55, 110, 300, 10,000) plus one manually chosen
verb per particle (to make sure that interesting am-
biguous verbs were included). The frequency bands

had been determined such that there were approxi-
mately equally many particle verbs in each range.

Four independent judges had rated the composi-
tionality of the 99 particle verbs between 1 (com-
pletely opaque) and 10 (completely compositional).
The inter-rater agreement was significantly high
(W = 0.7548, χ2 = 274.65, df = 91, α =
0.000001), according to Kendall’s coefficient of
concordance. The average ratings of the judges per
particle verb are considered as the gold standard
scores for our experiments. Table 4 presents a selec-
tion of the average scores for particle verbs with dif-
ferent degrees of compositionality. Note that there
are ambiguous particle verbs, whose scores are the
average values of the compositionality scores for the
different meanings.

particle verb score
nachdrucken ‘reprint’ 9.250
aufhängen ‘hang up’ 8.500
ausschneiden ‘cut out’ 8.250
vorgehen ‘go ahead’ 6.875

‘approach’
abwaschen ‘do the dishes’ 6.500
abschließen ‘close’ 6.000

‘finalise’
nachweisen ‘prove’ 5.000
anklagen ‘accuse’ 4.500
zutrauen ‘feel confident’ 3.250
umbringen ‘kill’ 1.625

Table 4: Gold standard judgements.

The evaluation itself was performed as follows.
For each cluster analysis and each probability
threshold t, we calculated for each particle verb
from the gold standard the proportion of how of-
ten it appeared in a cluster together with its base
verb, in relation to the total number of appear-
ances, cf. Equation (4). The ranked list of the
cluster-based compositionality judgements was then
compared against the ranked list of gold standard
judgements, according to the Spearman rank-order
correlation coefficient. This correlation is a non-
parametric statistical test that measures the associ-
ation between two variables that are ranked in two
ordered series.

comppv =
∑

c p(pv, c) ≥ t ∧ p(bv, c) ≥ t∑
c p(pv, c) ≥ t

(4)



The collection of the gold standard and the eval-
uation procedure were performed according to a
comparable evaluation task for English particle verb
compositionality in McCarthy et al. (2003). The
parametric tests are described in Siegel and Castel-
lan (1988).

5 Results
The correlation scores differ substantially accord-
ing to the linguistic features and the parameters of
the cluster analyses. Furthermore, the probability
threshold that determined cluster membership di-
rectly influenced the number of particle verbs that
were included in the evaluation at all. We focus
on presenting the overall best results per feature
(group) in Tables 5 and 6 for LSC and PAC, respec-
tively, and comment on the overall patterns. The
tables show

• the Spearman rank-order correlation coeffi-
cient (corr),

• the coverage (cov), i.e., the proportion of gold
standard verbs included in the evaluation after
applying the probability threshold,

• the f-score (F1) of the correlation and cover-
age values as usually applied to precision and
recall; it indicates a compromise between the
correlation and the coverage, cf. Equation (5),

• the number of clusters,

• the number of iterations, and

• the membership threshold

of the best results.

f−score =
2 ∗ corr ∗ cov
corr + cov

(5)

5.1 Technical Parameters
The best results per feature (group) as listed in the
tables are reached with different numbers of clusters
(ranging from 20 to 200); with LSC, the best results
are obtained after all (i.e., 200) training iterations;
with PAC, the best results are obtained sometimes
after 50, sometimes after 100 iterations. So in the
tables (and in general), there is no clear tendency to-
wards an optimal number of clusters with respect to
our task; concerning the optimal number of training
iterations, LSC seems to profit most from the largest
possible number of iterations (so it might be worth
testing even more training iterations than 200), and
PAC does not seem to have a strong preference.

The optimal probability threshold for cluster
membership is difficult to judge about, as that value
strongly depends on a preference for correlation vs.
coverage. The lower the threshold, the more par-
ticle verbs are included in the clusters, so the re-
call (coverage) increases while the precision (cor-
relation) decreases. The tables list the best results
according to the f-score, but if one wanted to use
the cluster analyses within an application that incor-
porates particle verb compositionality values, one
would have to determine a favour for precision vs.
recall, to identify the appropriate threshold. The
best correlation results with an acceptable coverage
of 50-60% go up to .433 (LSC, obj), and .236 (PAC,
n-syntax). In general, the coverage is approx. 10-
30% for a threshold of 0.01, 30-60% for a threshold
of 0.001, 40-70% for a threshold of 0.0005, and 50-
80% for a threshold of 0.0001.

Overall, the best f-score values go up to .499 for
LSC and .327 for PAC, and the PAC results are in
general considerably below the LSC results. The
lowest f-scores go down to zero for both cluster-
ing approaches, and sometimes even reach negative
values, indicating a negative correlation. In sum,
our methods reach moderate correlation values, and
considering that we have worked with very simple
distributional features that ignored other than some
basic information at the syntax-semantics interface,
we regard this a reasonable result. The dependency
of the correlation scores on the clustering parame-
ters, however, remains largely unclear.

5.2 Linguistic Parameters
Concerning the linguistic features in the clustering,
the picture differs with respect to LSC vs. PAC.
With LSC, direct object and pp object information
is obviously valuable in comparing particle verbs
with base verbs, despite the transfer at the syntax-
semantics interface, while subject information is not
very helpful, as expected. Comparing the unions
of syntactic functions with the individual functions,
LSC profits more from the individual functions,
while PAC profits more from the unions. In both ap-
proaches, the unmarked n-syntax condition outper-
forms the marked n+syntax condition, as expected,
but the difference is not impressive.

Comparing LSC and PAC, we can identify var-
ious reasons for why the PAC results are consid-
erably below the LSC results: (i) the dependency
of selectional preferences on the subcategorisation
frames that represents a strength of PAC, does not
play an important role in our task (rather, the ref-



best result analysis membership
input corr cov f-score clusters iter threshold
obj .433 .59 .499 100 200 .0005
subj .205 .76 .323 50 200 .0001
pp .498 .40 .444 20 200 .0005
n+syntax .303 .54 .388 50 200 .0005
n-syntax .336 .56 .420 100 200 .001

Table 5: LSC results.

best result analysis membership
input corr cov f-score clusters iter threshold
obj .100 .53 .168 100 50 .0005
subj .783 .05 .094 20 50 .01
pp .275 .21 .238 200 100 .01
n+syntax .213 .61 .316 20 100 .0001
n-syntax .236 .53 .327 200 100 .001

Table 6: PAC results.

erence to syntactic functions is supposed to have
a negative influence on the prediction of compo-
sitionality, cf. Section 2); (ii) the high frequency
(base) verbs included in the training data have a
negative impact on cluster composition, i.e., many
clusters created by PAC are dominated by few high-
frequency verbs, which is sub-optimal in general
but in our case has the additional effect that many
compositionality predictions are 1 because it is very
likely that for a specific particle verb also the base
verb is in the cluster; (iii) the generalising property
of PAC that would have been expected to help with
the sparse data of the lexical heads, does not im-
prove the LSC results but rather makes them worse.

Tables 7 and 8 present compositionality scores
from the best LSC and the best PAC cluster analy-
ses (cf. Tables 5 and 6), and relates them to the gold
standard (gs) scores repeated from Table 4. Further-
more, the number of clusters in which the particle
verb (pv), the respective base verb (bv) and both
appeared, is given. While the LSC system scores
are of course not perfect, we can see that there is a
clear tendency towards higher overlap scores in the
top half of the table, in comparison to the bottom
half, even though the number of clusters the parti-
cle verbs appear in differ strongly. The only particle
verb that clearly is not able to subcategorise a direct
object (i.e., vorgehen in both of its senses) is also
a clear outlier in the quality of predicting the com-
positionality. In comparison to the LSC results, the

PAC system scores are obviously worse, the main
reason being that the high frequency base verbs ap-
pear in many of the 200 clusters, especially gehen
and bringen.

In sum, the optimal clustering setup to predict
particle verb compositionality (with respect to the
best results in the tables, but also in more general)
seems to use LSC with direct object or pp object
information. On the one hand, the preference for
these functions is intuitive (as many particle verbs
as well as their base verbs are transitive verbs, e.g.,
anbauen ‘build, attach’, nachdrucken ‘reprint’, um-
bringen ‘kill’), but on the other hand the gold stan-
dard also includes many intransitive particle verbs
(e.g., aufatmen ‘breathe’, durchstarten ‘touch and
go’, überschäumen ‘foam over’) where at least di-
rect objects intuitively cannot help with a composi-
tionality rating.

5.3 Comparison with Related Work
McCarthy et al. (2003) predicted the degree of com-
positionality of English particle verbs. Their work is
probably most closely related to our approach, and
we adapted their evaluation method. Their predic-
tion relies on nearest neighbourhood, assuming that
the neighbours of particle verbs should be similar
to the neighbours of the respective base verbs. The
definition of neighbourhood is based on Lin’s the-
saurus (Lin, 1998), and various statistical measures
for distributional similarity. The best result they



#clusters score
particle verb pv bv both gs system

nachdrucken ‘reprint’ 2 5 1 9.250 0.500
aufhängen ‘hang up’ 4 18 4 8.500 1.000
ausschneiden ‘cut out’ 5 3 3 8.250 0.600
vorgehen ‘go ahead’ 5 18 1 6.875 0.200

‘approach’
abwaschen ‘do the dishes’ 1 4 1 6.500 1.000
abschließen ‘close’ 2 2 1 6.000 0.500

‘finalise’
nachweisen ‘prove’ 16 20 5 5.000 0.313
anklagen ‘accuse’ 5 8 1 4.500 0.200
zutrauen ‘feel confident’ 12 4 1 3.250 0.083
umbringen ‘kill’ 2 2 0 1.625 0.000

Table 7: LSC gold standard judgements and system scores.

#clusters score
particle verb pv bv both gs system

nachdrucken ‘reprint’ 0 13 0 9.250 –
aufhängen ‘hang up’ 3 66 3 8.500 1.000
ausschneiden ‘cut out’ 3 10 3 8.250 1.000
vorgehen ‘go ahead’ 47 194 47 6.875 1.000

‘approach’
abwaschen ‘do the dishes’ 1 9 1 6.500 1.000
abschließen ‘close’ 63 98 48 6.000 0.762

‘finalise’
nachweisen ‘prove’ 66 56 24 5.000 0.364
anklagen ‘accuse’ 11 35 5 4.500 0.455
zutrauen ‘feel confident’ 7 7 0 3.250 0.000
umbringen ‘kill’ 11 190 11 1.625 1.000

Table 8: PAC gold standard judgements and system scores.

achieve is a Spearman rank correlation of 0.490,
which is slightly but not considerably better than our
best results.

Concerning the feature choice to describe and
compare German particle verbs and their base verbs
(more specifically: comparing the unmarked n-
syntax with the marked n+syntax), we can com-
pare our results with previous work by Schulte im
Walde (2005). Our work confirms her insight that
the differences between the two versions (with vs.
without reference to the syntactic functions) are vis-
ible but minimal.

6 Conclusions
This work determined the degree of compositional-
ity of German particle verbs by two soft clustering

approaches. We assumed that the more composi-
tional a particle verb is, the more often it appears in
the same cluster with its base verb, after applying
a probability threshold to establish cluster member-
ship. The overall best cluster analysis was reached
by the simpler cluster approach, LSC. It could pre-
dict the degree of compositionality for 59% of the
particle verbs; the correlation with the gold standard
judgements was .433. Considering that we have
worked with very simple distributional features that
ignored other than some basic information at the
syntax-semantics interface, we regard this a reason-
able result. We expect that if we extended our work
by incorporating the syntax-semantics transfer be-
tween particle and base verbs, we could improve on
the compositionality judgements.
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