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 Measure for comparison of two completely independent clusterings with no restrictions in 
 their similarity, the number of data points, or the number of clusters.

→ A weighted harmonic mean of homogeneity and completeness values. 

Homogeneity
Measure of how homogeneous the clusters 
in the clustering are

Completeness
Measure of how intact the gold standard classes 
remain with respect to the clustering

Because of fuzzy data (data points can belong to multiple clusters,
which means that clusters are not disjoint), joint probability with 
simple intersection |c ∩ g | with normalising constant N doesn't work.
Therefore we use a mass function µ:

µ: Total mass of the objects in the data shared by c and g
M: Total mass of the clustering

→ Each data point is assigned with a total mass of 1 and then evenly 
distributed among its classes and then normalised with the total mass 
of the clustering

Data points: p1, p2, p3, p4

Gold standard classes: g1, g2, g3, g4

Clusters: c1, c2

Distribution of ambiguous data points: Clustering of ambiguous data:
 

E.g. V-Measure would assign the pair p2 and g4 and p4 and g4 the same 
joint probability, but p2 belongs to three classes and p4 to two
→ Too much weight on highly ambiguous objects

  Using different data settings:

  Experiment 1:
  Data sets varying in the amount of
  different ambiguity rates of the objects 
  assuming a perfect clustering 
  → None of the measures reach
     the expected perfect value of 1 

  Experiment 2:
  Comparing arbitrary clusterings with 
  random objects with constant ambiguity
  rate across different data sizes.
  → Fuzzy V is less sensitive to ambiguity 

  than V

  Experiment 3: 
  Comparing variation in the ambiguity 
  rate while maintaining the data points
  → Both values decrease with each 
    cluster closer to the fuzzy gold stand. 

Ambiguity is ubiquitous in language and thus methods for dealing with 
ambiguous data are essential for robust systems and accurate 
representations in NLP. Soft clusterings are for instance a very natural 
strategy for representing ambiguous data. However, the evaluation 
methods are still missing a suitable measure for comparing the
soft cluster analyses. This work aims to fill this gap. 

Andrew Rosenberg and Julia Hirschberg. 2007. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. In Proceedings of the 2007 Joint 
Conference on Empirical Methods in Natural Language Learning (EMNLP-CoNLL), pages 410-420

Motivation V- Measure (Rosenberg and Hirschberg, 2007)

Fuzzy V-Measure H(C|G): Conditional entropy of C given G
H(G|C): Conditional entropy of G given C

H(C,G) and H(G,C): Joint entropies for 
normalisation 

Entropies are calculated with the joint 
probability of a cluster and a gold 
standard class. 

The number of points shared by c and g
 divided by the total number of data 

points N.

(a)  Distribution of data points in gold standard 
 with mass of objects (1 divided number of g)

(b) Contingency table containing mutual evidence 
 between classes and cluster based on the new,
 above introduced object distribution using the  
 adjusted joint probability with mass function µ.

     (c.f. section Fuzzy V-Measure)
 

(a) (b)

Example

Advantages of Fuzzy V:

c1 and g1 share points p1 and p2

c2 and g2 share points p1, p3 and p4

The highly ambiguous p2 reduces the 
evidence for: c1 given g1 p(c1|g1) = 0.83/2 

Even though c1 and g2 share all objects, 
the evidence is smaller than for:
c2 given g2 p(c2|g2) = 1.5/3 = 1/2 

→ Incorporates ambiguity of data points

Why does the curve decrease the more ambiguous a data set is?
Because of the entropy: Increased spread of mass (due to the ambiguity) leads to an increase in the overall uncertainty in the 
correspondence between clusters and classes

Why do the perfect clusterings not reach the maximum score 1?
Example table for perfect hard clusterings (a) and (b) vs. table for perfect soft clustering (c):

E.g. in (c) g1 and g2 share one ambiguous element which lead to similarity between them 
and to double entries between several cluster/gold-class pairings.  
→ Score less than 1

We propose to include Dissimilarity, which enables us to

1. Force a one-to-one mapping between cx and gx with high 
similarity and low dissimilarity 

2. Penalise other mappings, by uniformly distributing the remaining
error mass (ex is the dissimilarity between the best mapping cx 
and gx) 

Similarity: Shared elements' mass 
Dissimilarity: Missing and remaining elements between all 

cluster/class combinations 

Example 1: 3 elements A,B,C; B is ambiguous; perfect Clustering

Decision for final cluster to class mapping with the highest score 
of difference between Similarity and Dissimilarity.

Beyond Entropy

Resulting mapping:
c1 → g1 and c2 → g2 

Error mass = Dissimilarity value for the best mapping: 0
 
Example 2: Clustering and gold standard are different 
if error mass > 0, it will be distributed equally among the non-zero 
entries in each row

Performance of the V-Measures with dissimilarity enhancement:

● for perfect clustering
● with stepwise increase of 
  ambiguity rate (x-axis)

→ Both measures converge toward the desired score of 1 

Applying V-Measures 

Reference Conclusion: A purely entropy based measure cannot capture 
the complexity of highly ambiguous data sets.
A further disambiguation, e.g. Dissimilarity difference, on the 
cluster/class assignment is required.
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