Variants of Vector Space Reductions for Predicting the Compositionality of English Noun Compounds

Pegah Alipoormolabashi, Sabine Schulte im Walde

Observation

- The relationship between noun compounds and their constituents' meanings is not always the same.
- Snow-ball: A **ball** made of **snow**
- Butter-fly: Something that **flies**; Not clearly related to butter
- It's crucial for NLP applications that we know the interaction between compounds and constituents' properties.

Literature

- There's been research on automatic prediction of the **degree** of compositionality of compounds.
- Automatic prediction uses properties of compounds and

Setting

Datasets:

- Text data for making word vectors: ENCOW16 (Schäfer and Bildhauer (2012))
 - English COrpora from the Web
- Gold standard data for compounds' compositionality degree:
 - Provided by Reddy, et al (2011)
 - A list of English noun compounds and their constituents
 - Human judgement on the compositionality degree of the compounds and also properties of constituents
- **Training word vectors**

Vector Space Variations

• **ALL :** All context words

- POS Matrices
- **VV:** All context verbs
- NN: All context nouns
- **NN-k:** k most frequent corpus nouns
- PCA reductions
 - ALL-PCA-k: PCA with k dimensions on ALL
 - **NN-PCA-k:** PCA with k dimensions on NN
- Word2vec: 300d Word2vec vectors

constituents and/or the compounds' similarity to their constituents.

Degree of Compositionality: A measure of relatedness between a compound's meaning and it's constituents' meanings

Measure of Similarity: Usually words are represented with vectors in a vector space and their similarity is calculated as a function of vectors.

Our Contribution

We evaluated the role of vector-space reductions on the prediction of the compositionality degree of English noun compounds.

Zooming on Compounds and Constituents' Properties

- We split the words into categories based on their value of:
 - Compound frequency
 - Head productivity
 - Modifier productivity

• All trained with a window size of 10

POS parser

• The TreeTagger by Schmid, 1994 is used for POS tagging and lemmatization

Measure

- We used **cosine** as a measure of similarity between word vectors.
- We used the Spearman Rank-Order Correlation Coefficient (Siegel and Castellan, 1988) to compare the predicted results with human judgement.

Main Results

- **Word2vec** performs generally better than the other vectorspace variants.
- The nouns matrix outperforms the verbs matrix and the whole matrix.
- Performing **PCA reduction doesn't improve** the results.
- Reducing the nouns matrix to the k most frequent nouns leads to better results for some values of k. It gets better with increasing k, but reaches to a maximum around k=25000-30000.

Droportion' Doculto

Prediction Functions

WORD1: Use only the compound–modifier cosine score

- **WORD2:** Use only the compound-head cosine score
- **ADD:** Add the compound–modifier and compound–head cosine scores
- **MULT:** Multiply the compound–modifier and compound– head cosine scores
- **COMB:** Add the compound–modifier, compound–head and the multiplication of both cosine scores

Conclusion

- Word2vec with 300 dimensions is the winner, both in best performance and stability over different prediction functions.
- The second best results were obtained when using a **large** subset of context nouns.
- While ADD, MULT and COMB are better prediction functions overall, while zooming on subsets of words using just headcompound or modifier-compound similarity can be enough.

 Compound compositionality 	Properties Results	
 Head compositionality Modifier compositionality We then evaluated the predictions on each subset 	 All variants but Word2vec perform better on mid-frequent compounds and the prediction on that subset is better than on average. Modifier productivity doesn't seem to affect prediction results, but the results are better for compounds with mid-productive heads. Results are significantly better for compounds with high-compositional heads. 	
Comparison between best results of NN-k vectors 0.7	Comparison between best results among each group 0.7	Number of Experiments that Each Prediction Function Provided the Best Result of All
0.583 0.467 0.35 1000 5000 15000 25000 35000 Full NN	0.675 0.65 0.625 0.6 All NN-25000 Word2vec	WORD2 MULT

Vector Space Variant

WORD1

Vector Space Variant