
Second-order Co-occurrence Sensitivity of
Skip-Gram with Negative Sampling

Dominik Schlechtweg Cennet Oguz Sabine Schulte im Walde

Second-order Co-occurrence

(1a) As far as the Soviet Communist Party was concerned . . .

(1b) It is well-known that Communist authorities hated rock culture . . .

(2a) . . . this is the approach taken by the British Government.

(2b) . . . rather than risking deportation to British authorities.

first order

second order

[Schütze 1998]

Research Question
I Does SGNS capture second-order co-occurrence information?
→ Yes – it is more sensitive to second- than first-order context overlap

I SGNS is similar to Truncated SVD in terms of capturing second-order
co-occurrence structure [cf. Levy & Goldberg 2014]

I Capturing higher-order co-occurrence structure may explain superior
performance of SGNS and SVD over PPMI
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Table: Artificial co-occurrence pairs
with context overlap in different
orders of co-occurrence.

Hypothesis: SGNS makes vectors
of words from the 2ND group more
similar than vectors of words from
the NONE group (although both groups
have no first-order context overlap)

Side Hypothesis: SVD shows similar
behavior as SGNS

Exp. 1: Results

Figure: Results of simulation experiment. Values give average cosine distances across target words
with different levels of context overlap.

Exp. 2: Propagating Second-order Context

I create very small corpus (10M
tokens from ukWaC)

⇓
I extract first-and second-order

word-context pairs
⇓

I add second- to first-order pairs
for low-frequency words

⇓
I compare performance

(WordSim353) on first-order vs.
mixed training pairs

Hypothesis: Additional second-order
information impacts PPMI represent-
ations positively and stronger than
SVD and SGNS (because the latter
already capture second-order information)

Exp. 2: Results

Figure: Results of experiment 2. Values give correlation (Spearman’s ρ) of model predictions with
human similarity judgments.

Explanation: Transitivity of SGNS

W =

Party 1 −2 3
Government 3 2 −1
Communist −1 2 3

British 3 2 −1
authorities 2 −3 1

C =

Party 1 −2 3
Government 3 2 −1
Communist −1 2 3

British 3 2 −1
authorities 2 −3 1

Transitivity of SGNS: The representation of context words as
continuous objects (vectors) establishes transitivity of the similarity
relation between word and context vectors. This enables SGNS to
capture second-order co-occurrence information.

Open Questions

I Do other modern embeddings
(GloVe, ELMo, BERT) capture
second-order co-occurrence?

I How does second-order information
relate to performance?

Figure: Results of simulation experiment with GloVe
embeddings. [Pennington et al. 2014]

Figure: Error reduction on analogy task for levels of
higher-order co-occurrence [Artetxe et al. 2018]
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