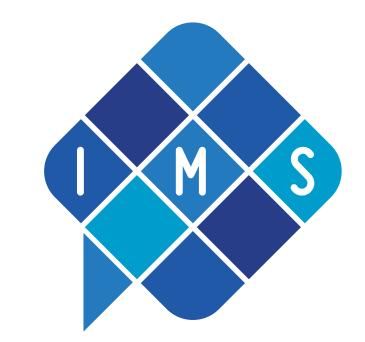
Factoring Ambiguity out of the Prediction of Compositionality for German Multi-Word Expressions

Stefan Bott, Sabine Schulte im Walde Institute for Natural Language Processing - University of Stuttgart, Germany [stefan.bott, schulte}@ims.uni-stuttgart.de



MOTIVATION

Problem setting

- Multi-word expressions (MWEs) can be more or less compositional with respect to their components
- Distributional semantic models (DSMs) can approximate compositionality with semantic closeness

EXAMPLES

Multi-Word Expressions				Mean Ratings	
				Modifier	Head
Ahorn blatt	'maple leaf'	maple	leaf	5.64	5.71
Blatt salat	'green salad'	leaf	salad	3.56	5.68
See zunge	'sole'	sea	tongue	3.57	3.27
Löwen zahn	'dandelion'	lion	tooth	2.10	2.23
<i>Fliegen</i> <i>pilz</i>	'toadstool'	fly/bow tie	mushroom	1.93	6.55
<i>Fleisch</i> <i>wolf</i>	'meat chopper'	meat	wolf	6.00	1.90
an leuchten	'illuminate'	an _{PRT}	illuminate	_	5.95
auf horchen	'listen attentively'	auf _{PRT}	listen	_	4.55
aus reizen	'exhaust'	aus _{PRT}	provoke	_	3.62
ein fallen	'remember/invade'	ein _{PRT}	fall	—	2.54
an stiften	'instigate'	an _{PRT}	create	_	1.80

• Ambiguity represents an obstacle for distributional semantic models

Goals

- Improve prediction of compositionality levels
- Factor out ambiguity

We are interested in two types of German multi-word expression:

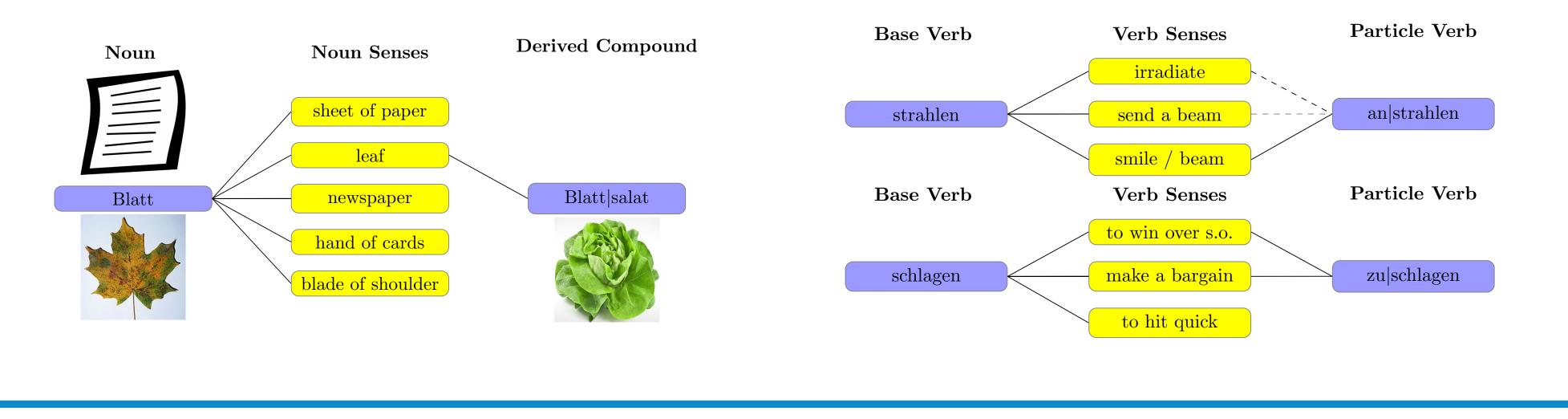
- Noun-noun compounds (NNCs)
- Particle Verbs (PVs)

We suggest

- Soft clustering as an approximation different word senses
- Distributional similarity of an MWE and one constituent in the same cluster indicates strong compositionality.

SOFTCLUSTERING

Examples of German noun-noun compounds and German particle verbs, accompanied human mean ratings on the degrees of compound-constituent compositionality (scale from 1 to 6).



MODELS

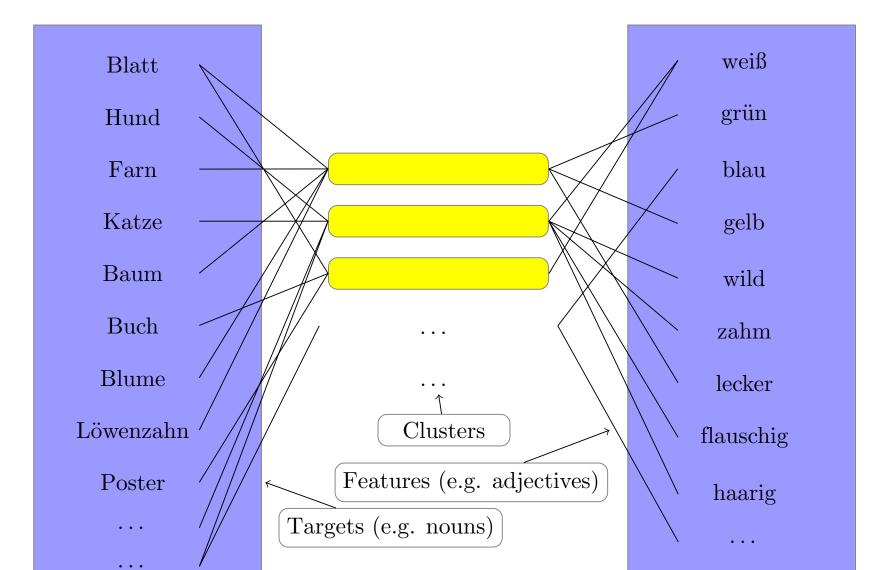
We use two types of models:

• Lowest value among all clusters

Latent Semantic Classes (LSC) is a soft clustering algorithm which outputs three probability distributions, across:

- Clusters
- Targets within each cluster
- Predictive feature within each cluster (our features are co-occurring words in local context)

Cluster membership of targets and features can be controlled by thresholds



- Standard word space models
- Clustering models, where semantic distance is measured within each cluster

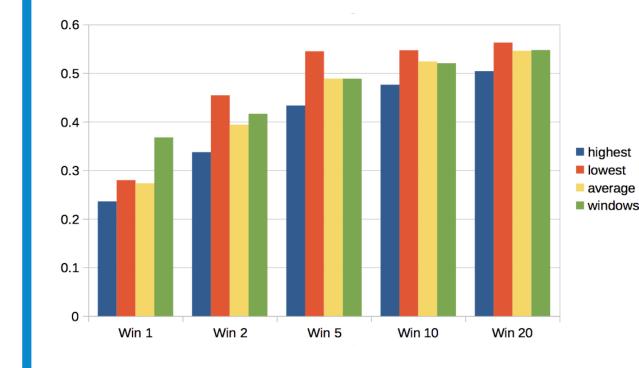
Combination schemes for clusters:

- Highest value among all clusters
- Average value

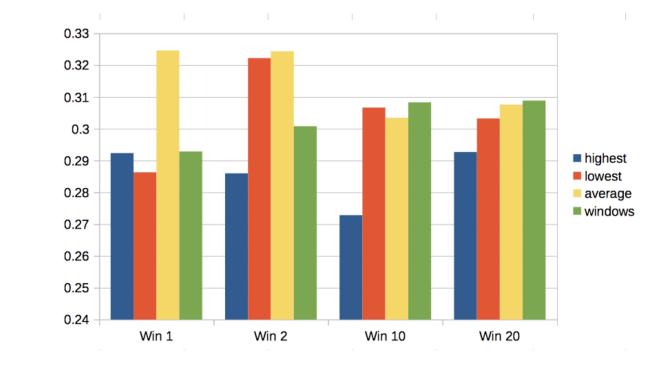
Models vary with respect to:

- Number of clusters
- Window size
- POS of co-occurring words
- Combination scheme
- Setting of thresholds

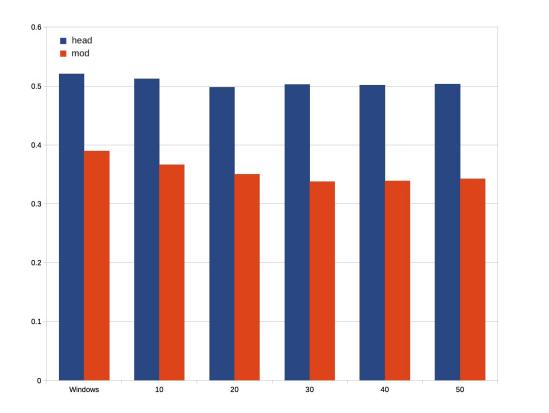
RESULTS



Results (in ρ values) for different window sizes for the NC-head



Results (in ρ values) for different window sizes for the PV gold



Results for different numbers of clusters for the NC gold standard (heads vs. modifiers)

DATA & MEASURES

Corpus:

• SdeWaC (v.3, 880 million words) corpus, POS-tagged and lemmatized

Gold Standards:

- GS-NN: 868 German NCs, 8 annotators.
- GS-PV: 354 PVs, ratings obtained with Amazon Mechanical Turk.

Measures:

- Spearman's rank order correlation ρ
- Cosine similarity

gold standard

standard

- Higher ρ scores for NNCs than for PVs
- Window models increase their performance with larger context size
- Clustering models perform better for small context sizes in PVs

Conclusions:

- Soft clustering is a good approximation to real sense distinctions in MWEs and their components
- Factoring out ambiguity helps to improve compositionality assessment
- Different types of MWEs behave differently with respect to ambiguity

- PVs and NNCs profit from different combination schemes
- The number of clusters has no big effect on prediction quality
- The improvement with clustering models is stronger for PVs than for NNCs