Fine-grained Termhood Prediction for German Compound Terms Using Neural Networks

Anna Hätty Robert Bosch GmbH

Motivation

- domain-specific terms = linguistic expressions which characterize a domain
- automatic term extraction and term understandability \rightarrow separately researched
- \implies classes of termhood, which naturally include understandability

Background

 Tiers of terminology for different degrees of association to the domain

Appearance in only this domain (= very specific) \rightarrow not likely to be known outside of domain (= difficult to understand)

Roecke (1999)

Termhood Classes

Class	Description	Example
NonTerm	Not a domain term	Deutschland "Germany"
SIMTERM	Semantically related to the domain	Vitaminbedarf "requirement of vitamins"
TERM	Prototypical and understandable term of the domain	Schweinebraten "roast pork"
SpecTerm	Prototypical and non-understandable term of the domain	Blausud [blue boiling] special kind of boiling fish

Compound Examples

- Perfect matches:
- Tomate (TERM) + Püree (TERM) → Tomatenpüree (TERM) tomato + puree \rightarrow tomato puree
- Same component classes, but different compound classes:
- Mittel (NONTERM) + Alter (NONTERM) → Mittelalter (NONTERM) mean + age \rightarrow Middle Ages

Bei (NonTerm) + Fuß (NonTerm) → Beifuß (SPECTERM) with + foot \rightarrow mugwort

Different component classes, but same compound class:

Paprika (TERM) + Salat (TERM) → Paprikasalat (TERM) sweet pepper + salad \rightarrow sweet pepper salad

Paprika (NonTerm) + Häften (NonTerm) → Paprikahälften (Term) Sweet pepper + halves \rightarrow sweet pepper halves

Data Extraction & Annotation

Sabine Schulte im Walde University of Stuttgart

Compound Splitting

Combine three splitters:

- CharSplit (Tuggener, 2016), an ngram-based splitter
- CompoST (Cap, 2014), SMOR-based

Splitters	Wrong Splits	Wrong Side	% correct splits
CharSplit	25	9	91.4%
CompoST + CharSplit	14	9	94.2%
Compost + SCS + CharSplit	9	8	95.7%

- splitter (high precision)
- Simple Compound Splitter (SCS) (Weller-Di Marco, 2017) handcrafted rules and frequency information (high recall)

Models & Features

Baseline model: ٠

Basic architecture

- Word embeddings: pre-trained on Wikipedia, adapted on cooking recipes
- Features for components in cooking-domain:
 - Frequency: How frequently does a constituent appear in other expressions?
 - Productivity: Of how many expressions the constituent is part of?
- Optimization on heuristically estimated component classes (ConstOpt)

Results

- Better results for models using both compound and component information
- Optimization on heuristically estimated component class

- 400 cooking recipes (kochwiki.de, wikibooks cookbook, wikihow)
- 5 native speaker annotators
- 396 compounds

0.0			5.2			
185 11		5 83				
Agreement.						
NONTERM	SIMTERM	TERM	SPECTERM			
4.4	40	250	FO			

Model Pipeline

improves the results

■ NonTerm ■ SimTerm ■ Term ■ SpecTern

Conclusion

- New model of fine-grained classes of termhood, representing both the different degree of association to the domain and a domain term's understandability
- Including and optimizing on information about components leads to 0.8 F-score for best model

- References: Fabienne Cap. 2014. Morphological Processing of Compounds for Statistical Machine Translation. Dissertation, Institute for Natural Language Processing (IMS), University of Stuttgart. Thorsten Roelcke. 1999. Fachsprachen. Grundlagen der Germanistik. Erich Schmidt Verlag. Don Tuggener. 2016. Incremental Coreference Resolution for German. Dissertation, Faculty of Arts, University of Zurich. Marion Weller-Di Marco. 2017. Simple compound splitting for German. In Proceedings of the 13th Workshop on Multiword Expressions, MWE@EACL 2017,

- pages 161–166, Valencia, Spain

Corporate Research | CR/AEU2 | 2018-08-25 | COLING LAW-MWE 2018 ® Robert Bosch GmbH 2018. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Institut für Maschinelle Sprachverarbeitung

(H)

BOSCH