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Chris BrewUniversity of EdinburghLTG2 Buccleuch PlaceEdinburgh EH8 9LWScotland, UKchrisbr@cogsci.ed.ac.ukAbstractWe present preliminary results concerning the use oflexical clustering algorithms to acquire the kind of lex-ical knowledge needed to resolve de�nite descriptions,and in particular what we call `inferential' descrip-tions. We tested the hypothesis that the antecedentof an inferential description is primarily identi�ed onthe basis of its semantic distance from the description.We used various parameters for the co-occurrence clus-tering algorithm and di�erent approaches to measurethe distance between the lexical vectors. We foundthat in those cases in which the sort of lexical knowl-edge we acquired is the main factor, the algorithmswe used performed reasonably well; however, factorsother than semantic distance play the main role inthe majority of cases; several standing problems arediscussed. IntroductionIn order to develop systems for anaphoric resolutionwhose generality and performance can be evaluated ina quantitative fashion{i.e., by testing them over a cor-pus including texts from di�erent domains{it is neces-sary to address the issue of commonsense knowledge.The question we are currently studying is what kind ofcommonsense knowledge is involved in the resolutionof so-called bridging descriptions (Clark 1977), i.e.,de�nite descriptions that refer to an object introducedinto the common ground as the result of the mentionof a related object{such as the door in(1) John walked towards the house. THE DOORwas open.Arguably, the minimal hypothesis to pursue in thisconnection is that resolving these descriptions is purelya matter of lexical knowledge{i.e., that the identi�ca-tion of the antecedent depends solely on the degreeof association among lexical items. The assumptionthat the lexicon is organised like a `semantic' networkwhere some concepts are more closely related than oth-ers, originally motivated by semantic priming e�ects(Meyer & Schvaneveldt 1971), underlies most currentpsychological models of the lexicon, including Word-Net (Miller et al. 1990) and has been adopted in muchresearch on reference resolution: such models assumethat the antecedent for the door in (1) is found by look-ing for an antecedent whose concept is semantically

close (in some sense), and that the house is chosenbecause the concept associated with this antecedentsubsumes the concept associated with the inferentialdescription in the semantic network. We will call thisthe Main Hypothesis: Resolving an inferential de-scription is a matter of �nding the antecedent in thetext that primes the head predicate of the inferentialdescription most strongly.One possibility to get the information needed to testthis hypothesis is to use an existing source of lexicalknowledge, such as WordNet; however, the results weobtained with this method{reported in (Poesio, Vieira,& Teufel 1997){were not too satisfactory, owing tothe incompleteness of the information hand-coded inWordNet, as well as to several inconsistencies we foundin it. As a result, we have been exploring techniquesfor acquiring this information automatically. In theinitial phase, we have mainly been experimenting withclustering algorithms (Charniak 1993).In particular, the work discussed here was inspired by(Lund, Burgess, & Atchley 1995), who reported thatthe clusters of words obtained with their hal model oflexical clustering reect a notion of distance that cor-relates well with subjects' results on semantic primingtasks. This work o�ers therefore the opportunity totest the hypothesis discussed above that resolving in-ferential descriptions is a matter of semantic priming.We assessed the performance of several variants of thehal method on this task.BackgroundInferential DescriptionsOur studies of de�nite description use (Poesio & Vieira1998; Vieira & Teufel 1997; Poesio, Vieira, & Teufel1997) led to the development of a taxonomy of de�-nite descriptions reecting the types of commonsenseknowledge that appear to be involved in their resolu-tion. For the purposes of this paper, we will considerde�nite descriptions as falling in one of the followingthree categories:1Anaphoric same head: these are the de�nite de-scriptions whose resolution involves simply match-1As discussed in (Poesio & Vieira 1998), these categoriesare not completely mutually exclusive.



ing the head of the antecedent with the head of thede�nite description, as in a car ... the car;2Inferential: this is a semantically eclectic class, in-cluding those de�nite descriptions whose head isnot identical to that of the antecedent, and thosewhose relation with the antecedent is not one ofco-reference. This class also includes references toevents, as in John killed Bill. THE MURDER tookplace at 5pm, and to entities introduced by propernames, as in We are celebrating this year 200 yearssince Franz Schubert's birth. THE FAMOUS COM-POSER was born in 1797.Discourse new: this class consists of those de�nitedescriptions that do not have an antecedent in thetext, and includes both references to `larger situa-tion' knowledge such as the sun and possible �rst-mention de�nite descriptions such as the �rst manto sail to America (Hawkins 1978; Prince 1981;Poesio & Vieira 1998).In this paper we are exclusively concerned with theclass of inferential descriptions, also called 'bridgingdescriptions' following Clark's taxonomy. In order tocategorise the types of commonsense knowledge in-volved in their resolutions and to gain a feeling for howmany of the required inferences would be supported bya semantic network, this class was further analysed in(Vieira & Teufel 1997; Poesio, Vieira, & Teufel 1997);the following categories of inferential descriptions wereidenti�ed:Synonymy: the antecedent and the inferential de-scription are synonymous, as in a new album { therecord.Hypernymy/Hyponymy: the antecedent and theinferential description are in a is-a-relation, as inrice { the plant (super-ordination/hypernymy) or aplant { the rice (sub-ordination/hyponymy).Meronymy: the antecedent and the inferential de-scription stand in a part-of relation, as in a tree {the leaves.Names: the inferential description refers back to aproper name, as in Bach { the composer.Compound Nouns: the `antecedent' occurs as partof a compound noun, as in the stock market crash {the markets.Events: the antecedent is not introduced by a nounphrase, but by either a verb phrase or a sentence,e.g. they planned { the strategy.2In fact, even resolving these cases may involve someform of commonsense inference{e.g., to take into accountthe e�ects of pre-modi�ers and post-modi�ers in recognis-ing that a blue car cannot serve as the antecedent of thered car in I saw a blue car and a red car. The red car wasa Ferrari.

Discourse Topic: the antecedent is the{often implicit{`discourse topic' of a text, as in theindustry appearing in a text about oil companies.(General) Inference: the inferential description isbased on more complex inferential relations such ascausal inferences, as in last week's earthquake { thesu�ering people.The �rst three classes include the inferential descrip-tions whose resolution we might expect to be supportedby the sort of information stored in a typical semanticnetwork such as WordNet; these networks also includeinformation about individuals of the kind needed toresolve inferential descriptions in the `Names' class.Poesio, Vieira and Teufel ran a test on a corpusof 20 parsed Wall Street Journal articles from thePenn Treebank, including 1040 de�nite descriptions,of which 204 were classi�ed as inferential. When try-ing to resolve an inferential description, the discourseentities in the previous �ve sentences were consideredas potential antecedents, and WordNet was queried to�nd a relation between the inferential description andeach antecedent. WordNet found a relation betweenan inferential description and an antecedent for 107 ofthese descriptions, but in only 34 cases was the rightantecedent suggested. Separate heuristic-based tech-niques were also proposed, so that in total 77 descrip-tions were identi�ed correctly.Acquiring Semantic Networksby Clustering`Clustering' is a popular approach to lexical acquisitionbased on the idea that semantically related words areclose to each other in some higher-dimensional spacerepresentation where they form `clusters' of similarwords{i.e., the very same intuition behind research onsemantic networks. Clustering algorithms view eachword as a point in an n-dimensional space, i.e., as avector of size n, and the similarity between words ismeasured in terms of the distance between the pointsthat represent them. The goal of clustering algorithmsis to construct such a representation automatically, ex-ploiting a corpus. These methods di�er depending onthe dimensions used and their number, on the metricused to measure the distance among the points, andthe algorithm used to construct the vectors (Charniak1993).A common approach to clustering is to justuse words wi as dimensions{often called contextwords{, i.e., to let the vector associated with word w,~w, be a record of how frequently w occurred close to thewords wi; the intuition is that a word is de�ned by the`company that it keeps', i.e., by the words with whichit is most frequently encountered. Algorithms whichassign words vector representations of this type scan atext and whenever they encounter a word w they incre-ment all cells of ~w corresponding to the words wi thatoccur in the vicinity of w. The degree of vicinity is typ-ically de�ned by a window of �xed size, by the number



of either words or characters, varying strongly (com-pare, for example, a window of 5 words as in (Church& Hanks 1989) with a window of 100 characters as in(Sch�utze 1992)).Once the vectors associated with each word havebeen constructed in this way, we can estimate the se-mantic similarity between words by measuring the dis-tance between the associated vectors. A great numberof distance measures have been suggested, but the fol-lowing three are the best known:� Manhattan Metric:The Manhattan Metric measures the distance of twopoints in n-dimensional space by summing the abso-lute di�erences of the vectors' elements:d =Pni=1 jxi � yij� Euclidean Distance:The Euclidean Distance is calculated by summingthe squared di�erences of the vectors' elements andthen determining the square root:d =pPni=1(xi � yi)2.� Cosine of the Vectors' Angle:This measure does not calculate the distance be-tween points, but the angle � between the n-dimensional vectors which determine the points inn-dimensional space:cos(�) = Pni=1 xiyipPni=1 x2ipPni=1 y2i .The closer the cos(�) is to 1, the smaller the angle� is and therefore the shorter the distance is.Other measures proposed in the literature includeSpearman Rank correlation coe�cient, Hellinger dis-tance, and Kullback-Leibler divergence. Weightedcombinations of di�erent measures have also been used.(See (Levy, Bullinaria, & Patel 1997) for some discus-sion.)Lund et al's HAL ModelLund et al. (1995) used a 160 million word corpusof articles extracted from all newsgroups containingEnglish dialogue. They chose as context words the70,000 most frequently occurring symbols within thecorpus.The co-occurrence counts were calculated as follows.They de�ned a window size of 10 words to the leftand to the right of the target words, and within thiswindow, the co-occurrence values were inversely pro-portional to the number of words separating a speci�cpair. So, whenever a target word w was encountered,the context vector ~w was incremented as follows: thecount ~w[w1] for the word w1 next to the target wordwas incremented by 10, the count ~w[w2] for the nextword was incremented by 9, and so forth, thus weight-ing the closeness of the co-occurring words.To reduce the amount of data, the column variancesof the particular vectors used in each experiment werecomputed, and the columns with the smallest variances

were discarded. This left a 200-element vector for eachtarget word. Our MethodsIn our experiments we adopted the fundamental as-pects from the clustering technique of Lund et al, pa-rameterising several of its aspects in order to evaluatenot only the Main Hypothesis, but also the inuence ofcertain parameters on the results. We briey discussour methods here; for more discussion and details, see(Schulte im Walde 1997).As in the case of Lund et al, our basic clusteringalgorithm involves associating with each word a vectorwhose dimensions are other words; and again as in theircase, the vectors are constructed by scanning a text,considering for each word w that is encountered allneighbours wi in a window of size n, and increasingby a factor possibly weighted by distance the cells ofw's vectors associated with each wi. This algorithmwas made parametric on window size (we consideredsizes 1,2,3,5,10,20 and 30), on whether inected wordsor their lemmas were considered, and on whether justwords or word/tag pairs were used.We ran some preliminary experiments to determinetwo additional parameters: corpus size and number ofdimensions of the vectors. We set on a 30 million wordscorpus; as for the dimension of the vectors, we followed(Huckle 1996) and used the 2,000 most common con-tent words in our corpus as dimensions.Our algorithm for resolving inferential de�nite de-scriptions is as follows. For each description, all headnouns and head verbs in the previous �ve sentencesare considered as possible antecedents, as in (Poe-sio, Vieira, & Teufel 1997). For each antecedent, thedistance between the vector associated with the headnoun of the inferential description and the vector as-sociated with the possible antecedent is measured; theantecedent whose vector is closest to that of the infer-ential description is chosen. Three di�erent measuresof distance were tried: Manhattan, Euclidean, and Co-sine.We used the British National Corpus3 for trainingand the 20 articles from (Poesio, Vieira, & Teufel 1997)to evaluate the results.Experiments and ResultsExperiment 1In order to get a baseline with respect to which to eval-uate the actual performance of the method, we ran anexperiment in which the antecedent for each inferen-tial description was chosen randomly. Appropriate43This is a 100-million words collection of both writtenand spoken language, see http://info.ox.ac.uk/bnc/.4An issue to be kept in mind in what follows is thatinferential descriptions, unlike other cases of referential ex-pressions, may be related to more than one `antecedent' ina text, and therefore evaluating the results of a system ismore di�cult in this case (Poesio & Vieira 1998).



antecedents for 11 out of 203 inferential descriptions{5.4% of the total{were found with this method.Experiment 2In this second experiment, we trained and resolved overuntagged and lemmatised words. We tried windowsizes of 1,2,3,5 and 10 words. The results for the threedistance measures were as follows, with the best resultin bold: Window SizeMetric 1 2 3Man 37 (18.2%) 36 (17.7%) 39 (19.2%)Euc 37 (18.2%) 36 (17.7%) 39 (19.2%)Cos 39 (19.2%) 36 (17.7%) 39 (19.2%)Window SizeMetric 5 10Man 41 (20.2%) 37 (18.2%)Euc 39 (19.2%) 40 (19.7%)Cos 42 (20.7%) 45 (22.2%)Cosine worked best as a distance measure, and the re-sults were better with bigger windows. The best resultsfor Manhattan Metric were achieved at window sizesof three and �ve; for Euclidean Distance, the resultsseemed to get (slightly) better with larger windows.Experiment 3One problem we observed in the second experimentwas that lemmatising might create two identical word-forms out of two di�erent lexemes, usually noun andverb, as in to plan and the plan, and since we did notdistinguish between di�erent parts of speech, the al-gorithm could not tell the di�erence. In our thirdexperiment we ran the clustering algorithm and theresolution algorithms on texts in which each word hadbeen tagged, so as to avoid the problem encountered inthe previous experiment; and we tried larger windowsizes, since it appeared from the previous experimentthat larger windows performed better.5 The resultsare summarised by the following two tables:Window sizeMetric 1 2 3 5Man 34 (16.8%) 35 (17.2%) 41 (20.2%) 41 (20.2%)Euc 35 (17.2%) 37 (18.2%) 37 (18.2%) 36 (17.7%)Cos 41 (20.2%) 45 (22.1%) 46 (22.7%) 41 (20.2%)Window sizeMetric 10 15 20Man 42 (20.7%) 44 (21.7%) 44 (21.7%)Euc 37 (18.2%) 38 (18.7%) 39 (19.2%)Cos 41 (20.2%) 38 (18.7%) 38 (18.7%)The interesting fact about these results is that al-though Cosine was again the most successful measurewhen a window size of 3 was used, increasing the win-dow size made things worse, not better; unlike forManhattan Metric, whose performance improved withlarger windows. Anyway, the total number of correctlyresolved inferential descriptions did not change.5In this second experiment we also tried varying twoadditional parameters, (i) we ran the clustering algorithmgiving equal weight to all words in the window, no matterits distance from the word whose vector was being updated;(ii) we constructed vectors of twice the size, distinguishingbetween left and right context; but neither of these changesa�ected the results (Schulte im Walde 1997).

The per-class results for the best-performing combina-tion in the experiments were as follows:Relationship Exp. 2 Exp. 3 TotalSame Head 9 (100.0%) 9 (100.0%) 9Synonymy 3 (25.0%) 4 (33.3%) 12Hypernymy 2 (15.4%) 2 (15.4%) 13Meronymy 4 (36.4%) 2 (18.2%) 11Names 1 (2.3%) 1 (2.3%) 44Events 3 (10.0%) 5 (16.7%) 30Compound Nouns 16 (66.7%) 16 (66.7%) 24Discourse Topic 2 (14.3%) 1 (7.1%) 14Inference 5 (10.9%) 6 (13.0%) 46Total 45 (22.2%) 46 (22.7%) 203DiscussionAnalysis of the ResultsEven the best parameter con�guration (measure Co-sine, window size of 3) only resulted in appropriateantecedents for 22.7% of the inferential descriptions.Why was that?The cases in which an inferential description was notresolved to its correct antecedent fell in the followingcategories:� In some cases, the desired antecedent could not befound since it was not on the list of possible an-tecedents for the inferential description. This hap-pened if the right word was either before the preced-ing �ve sentences, or after the description. In thiscase, another (incorrect) antecedent was still sug-gested by the algorithm. There were 22 (10.8%) suchcases in the experiments.� In several cases, there was a word-form among theantecedents which was identical to the inferential de-scription, and therefore always chosen as antecedent,yet it was not the desired antecedent. We alreadymentioned one reason for that{ lemmatisation occa-sionally created two identical word-forms, e.g., planfrom planned. Another, more interesting reason isthat sometimes the desired antecedent was describedusing a di�erent word-form. This happened, forexample, with inferential descriptions referring tonames: e.g., one text about companies mentionedthe word company quite often, and then it mentioneda speci�c company called Pinkerton. The followinginferential description the company referred to thisspeci�c company, but the algorithm picked insteadan antecedent explicitly introduced with the wordcompany that had appeared in the preceding �vesentences.� Finally, the antecedent found by the algorithm wassemantically very close to the inferential description{in some cases, even closer{but still not the right an-tecedent: for example, in one case market resolvedto customer instead of phone service. About a thirdof the problems in both experiments fell in this cat-egory.Semantic Primingand Inferential DescriptionsEven though in both Experiments 2 and 3 we got muchbetter results than chance, and even though the results



could still be improved by about 14-15% with betterclustering algorithms, the fact that in about a third ofthe cases the correct antecedent was not the semanti-cally closest one clearly indicates that what we calledthe Main Hypothesis is false: i.e., that semantic prim-ing is not the only factor involved in the resolution ofinferential descriptions. This insight is undermined bythe following observation: the following �gure showsthe cosine of the distances of the 203 antecedents tothe inferential descriptions, as chosen by our algorithm.The higher the cosine is (i.e. the closer to +1), theshorter the distance between antecedent and descrip-tion was. The numbers very between -1 and +1, butare concentrated in the area between 0.3 and 0.6:
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The next �gure shows the cosine of the distances of the203 desired antecedents to the inferential descriptions.Also these distances show variation, but in the areabetween 0 and 0.6:
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Even if we had resolved all inferential descriptions toan antecedent in a very short distance, we would nothave succeeded, since { as the second �gure clearlyshows { the resolution should be to an antecedent in acertain distance. The desired antecedent was thereforegenerally not that word semantically closest to, i.e.,most strongly priming, the inferential description.The most obvious next hypothesis, especially at thelight of previous work on de�nite descriptions, is thatattentional mechanisms play a role{i.e., that a focus-ing mechanism such as those suggested by Grosz (1977)and Sidner (1979) restricts the range of potential an-tecedents. If this were the case, the `long-distance'

cases of inferential descriptions could then be taken asreferences to previous discourse foci put on the stack.Identifying the `focus' (or `foci') and tracking focusshifts in a real text in a completely uncontroversialfashion is notoriously di�cult, and it is certainly nota task that can be implemented at the moment; wedid nevertheless attempt a preliminary veri�cation ofthis new hypothesis by analysing 4 of the 20 texts pre-viously studied, identifying the available foci accord-ing to the proposal in (Poesio, Stevenson, & Hitzeman1997), and trying to decide for each inferential descrip-tion whether its resolution only depended on lexicalknowledge (i.e., the antecedent was clearly not a fo-cus) or whether instead its antecedent was one of thecurrent foci; we didn't count unclear cases. Surpris-ingly enough, given all the possible complications justmentioned, the results were fairly clear: of the 44 in-ferential descriptions in these four texts that we couldclassify unambiguously, only 15 (about 33%) dependedexclusively on lexical knowledge for their resolution; in29 cases, keeping track of the focus was necessary.This admittedly very preliminary study suggeststhat our algorithm in fact performed better than the22.7% �gure mentioned above would suggest. If onlyabout 33% of inferential descriptions can be resolvedsolely on the ground of lexical knowledge and withoutkeeping track of the current focus, then a fairer evalu-ation of the performance of our clustering algorithm isthat it achieved about 66% of what we could expect itto achieve.It should also be noted that this analysis indicatesthat completely ignoring commonsense knowledge dur-ing resolution, and just assigning the current focus asantecedent for an inferential description, would notwork either: for one thing, about 33% of inferentialdescriptions do not relate to the current focus, but tosome other discourse entity; and anyway when morethan one focus is available, the choice among them goesdown to lexical knowledge again. In other words, bothlexical information and information about the currentfocus really seem necessary.Future WorkSince the commonsense knowledge acquired by themethods discussed in this paper does seem to be crucialfor resolving inferential descriptions, and the choice ofparameters for the clustering algorithm as well as thechoice of the measure do seem to have an impact on theresults,6 we intend to continue our investigation of dif-ferent ways of choosing the dimensions, window sizes,other measures and also combinations of measures, tosee if we can improve the method's performance in thisrespect.We expect that performance will be improved byusing the same corpus for training and evaluation(already, we had to correct for di�erences between6See (Levy, Bullinaria, & Patel 1997) for a more thor-ough discussion of the impact of various parameter con�g-urations on di�erent tasks.



British and American lexicon). We are also consid-ering whether more than one type of clustering algo-rithm may be needed. The particular way of comput-ing similarity we have adopted here looks like a goodmethod for acquiring synonymy relations and subtyp-ing relations, i.e., the information used for resolvingdescriptions that co-refer with their antecedent with-out being same-head, such as those descriptions thatare expressed via a synonymous or hyponymous pred-icate (as in the home / the house) or that refer to anevent (as in John killed Mary. THE MURDER tookplace .... ). However, words that are merely associatedsuch as door / house do not necessarily always occur inthe same contexts; in order to learn this sort of infor-mation it may be better to simply look at how oftenthe words themselves occur in the same context, in-stead of looking at which other words they occur with.E.g., one could tell that `door' and `house' are relatedbecause they occur often together, especially if theyoccur together in certain constructions. Vector dis-tance does not expose the desired similarity between'door' and 'house'; we are investigating the possibilityof adding further factors, such as a direct measure ofassociation between the target words, in the decisionprocess. Information from parsing could be useful inthe same way.AcknowledgementsWe wish to thank Will Lowe, Scott McDonald and Re-nata Vieira for much help with the algorithms and withtesting the system. Massimo Poesio is supported by anepsrc Advanced Fellowship.ReferencesCharniak, E. 1993. Statistical Language Learning.Cambridge, MA: The MIT Press.Church, K. W., and Hanks, P. 1989. Word Associa-tion Norms, Mutual Information, and Lexicography.In Proc. of the 27th Annual Meeting of the Associa-tion for Computational Linguistics, 76{83.Clark, H. H., and Marshall, C. R. 1981. De�nite Ref-erence and Mutual Knowledge. In Joshi, A.; Webber,B.; and Sag, I., eds., Elements of Discourse Under-standing. New York: Cambridge University Press.Clark, H. H. 1977. Bridging. In Johnson-Laird, P. N.,and Wason, P., eds., Thinking: Readings in CognitiveScience. London and New York: Cambridge Univer-sity Press.Grosz, B. J., and Sidner, C. L. 1986. Attention, Inten-tion, and the Structure of Discourse. ComputationalLinguistics 12(3):175{204.Grosz, B. J. 1977. The Representation and Use ofFocus in Dialogue Understanding. Ph.D. Dissertation,Stanford University.Hawkins, J. A. 1978. De�niteness and Inde�niteness.London: Croom Helm.
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