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Noun-Noun Compounds and Compositionality

•Noun-Noun Compounds: complex words with two simplex nouns as constituents
→ left: modifier⇒ fish soup
→ right: morphological head⇒ fish soup

•Compositionality: expresses that the meaning of a compound can be obtained
by the meaning of its constituents
→ leather trousers / Lederhose: highly compositional
→ jailbird / Knastbruder : highly compositional w.r.t. the modifier
→ sun flower / Sonnenblume: highly compositional w.r.t. the head
→ scapegoat / Sündenbock : non-compositional

Goal

How do compound features influence the prediction of compositionality with a distri-
butional model?
E.g.: Are compounds with a high-frequent head more easily/difficult to predict than
compounds with a low-frequent head?

Features

•Corpus frequency
frequencies of compound, modifier and head in the web corpora EN-/DECOW14A
(Schäfer and Bildhauer, 2012) (en-/decow)

•Constituent family size
denotes either the number of compound types in en-/decow which have the same
modifier or the same head
→ e.g. modifier family size of game: game inventor, game console, ....
→ e.g. head family size of game: ball game, video game, ...

•Ambiguity
number of senses of the modifier and head from WordNet/GermaNet

•Semantic relations
define how two nouns link to each other in a compound, e.g. kitchen door →
kitchen HAVE door
Relation annotation scheme used: by Ó Séaghdha (2007)

Gold Standards

All compound datasets include compositionality ratings and information about the
features.
1. newly created compound sets:
•Ghost-NN S (German): balanced for modifier family size and head ambiguity

(180 compounds)

•Ghost-NN XL (German): extended Ghost-NN S, enriched with compounds of
the same modifier and head families like in Ghost-NN S (868 compounds)

2. existing datasets enriched with missing features:
•Schulte im Walde et al. (2013) (German)

•Reddy et al. (2011) (English)

•Ó Séaghdha (2007) (English) (part of 396 compounds)

Distributional Model of Compositionality
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Figure 1: Illustration for sematic space model of compositionality

1. compute vectors for compounds and each of its constituents ⇒ search for con-
text words (nouns) in a window of words around the target (compound and con-
stituents) and count frequencies

2. association measure: local mutual information (LMI) (Evert, 2005)

3. compute cosine similarities: between compound and modifier, and compound
and head vectors

4. compute Spearman’s rank correlation coefficient (Siegel and Castellan, 1988):
correlation between manually annotated compositionality scores and those com-
puted by the system

Evaluation of features: extract min/max 60

To distinguish between low and high feature values for evaluation:
• sort all compounds once for each feature (their corpus frequency, the corpus fre-

quency of their head, the constituent family size of their head ...)

• compare 60 lowest with 60 highest examples (exception: Reddy et al. (2011): 45
compounds)

Results
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Figure 2: results for a) compound b) modifier and c) head corpus frequency
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Figure 3: results for a) modifier and b) head constituent family size
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Figure 4: results for a) modifier and b) head ambiguity
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Figure 5: results for relations of a) Ghost-NN and b) Ó Séaghdha (2007)

Conclusion

→Prediction of compositionality with a semantic space model is easier if:
– compound corpus frequency is high
– corpus frequency, family size and ambiguity of the head are low

→ corpus frequency, family size and ambiguity of the modifier are irrelevant
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