

Distinguishing Paradigmatic Semantic Relations: Human Ratings and Distributional Similarity

Sabine Schulte im Walde schulte@ims.uni-stuttgart.de

Motivation

Paradigmatic semantic relations

- Central in organisation of mental lexicon (Miller & Fellbaum, 1991; Murphy, 2003): synonymy, antonymy, hypernymy, (co-)hyponymy
- Provide a structure for the lexical concepts that words express.
- Natural relation structure differs across word classes:

Distributional Models

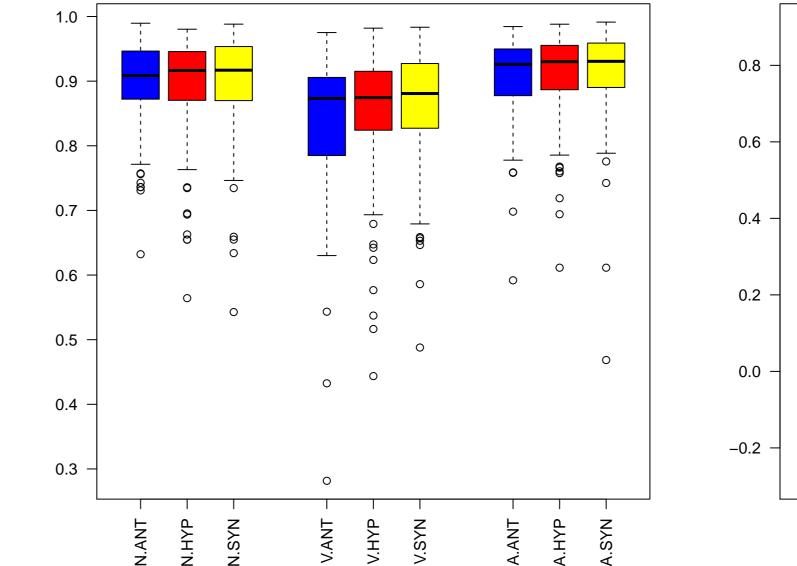
Cosine similarity

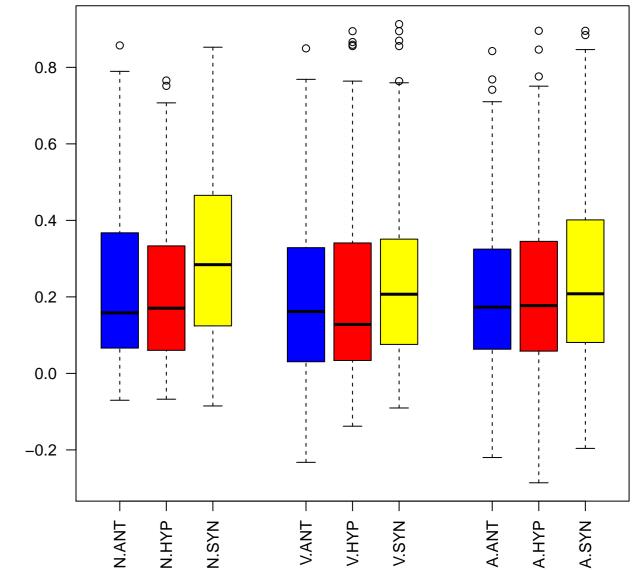
- Paradigmatic semantic relation pairs are expected to be close in word space.
- Vector space: 20-word co-occurrence in web corpus DECOW14AX, weighted by frequency vs. local mutual information (Evert, 2005; Schäfer & Bildhauer, 2012)
- Distributional similarity: cosine of vector angle
- -hypernymy \rightarrow noun lexicon; minor for verbs; unnatural for adjectives
- -antonymy \rightarrow adjective lexicon
- -hypernymy, antonymy, synonymy, entailment \rightarrow verb lexicon

Distributional vector space models

- Rely on the distributional hypothesis (Harris, 1954; Firth, 1957).
- Model meaning and "similarity" of target words (Turney & Pantel, 2010).
- Paradigmatic relations are difficult to distinguish: The boy/girl/person loves/hates the cat.

Perspectives


• Perspectives: cognitive semantics and distributional semantics


• Questions:

- How do humans perceive and distinguish semantic relatedness?
- To what extent are corpus-based approaches successful in the distinction?

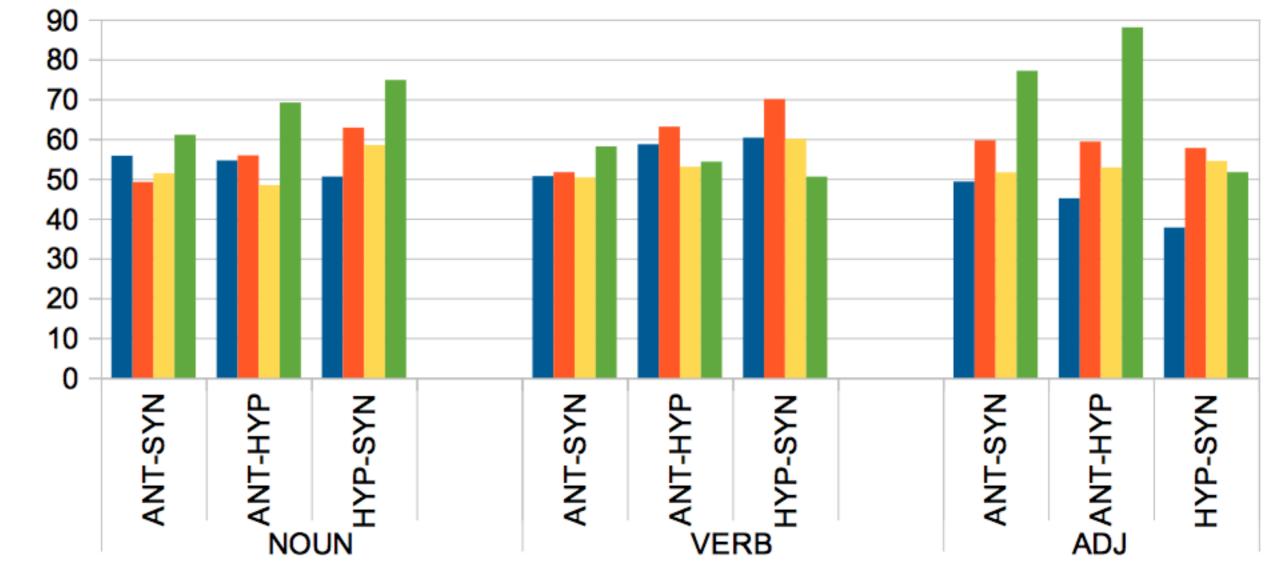
Human Ratings

Target–response paradigmatic relation pairs

Automatic classification

- Series of classification experiments
- Features: window co-occurrence vs. lexico-syntactic patterns
- Vector representations of relation word pairs:
- -Window-COS: cosine scores between word pairs
- -Window-DIFF: difference vector for word pair
- -Window-PROD: vector product for word pair
- Pattern: linear word sequences between related words
- Corpus: *SdeWaC* (Faaß & Eckart, 2013)
- Targets: Random choice of 99 WordNet targets per word class: nouns, verbs, adjectives (Scheible & Schulte im Walde, 2014), balanced for
- -frequency class (low; mid; high)
- -polysemy class (monosemous; two senses; >2 senses)
- -size of semantic class
- Experiments:
- -generation (5,745/8,910 pair types/tokens)
- rating (1,684 pair types; scale: 0–5)

Experiment 1: Generation of relation pairs (examples)


	ANT		SYN		HYP			
	<i>Bein/Arm</i> (leg/arm) <i>Zeit/Raum</i> (time/space)	10	Killer/Mörder (killer)	8	Ekel/Gefühl (disgust/feeling)	7		
INCOIN	<i>Zeit/Raum</i> (time/space)	3	Gerät/Apparat (device)	3	<i>Arzt/Beruf</i> (doctor/profession)	5		
VERB	<i>verbieten/erlauben</i> (forbid/allow)	10	<i>üben/trainieren</i> (practise)	6	trampeln/gehen (lumber/walk)	6		
	<i>setzen/stehen</i> (sit/stand)	4	<i>setzen/platzieren</i> (place)	3	wehen/bewegen (wave/move)	3		
ADJ	dunkel/hell (dark/light)	10	mild/sanft (smooth)	9	grün/farbig (green/colourful)	5		
ADJ	heiter/trist (cheerful/sad)	2	<i>bekannt/vertraut</i> (familiar)	4	heiter/hell (bright/light)	1		

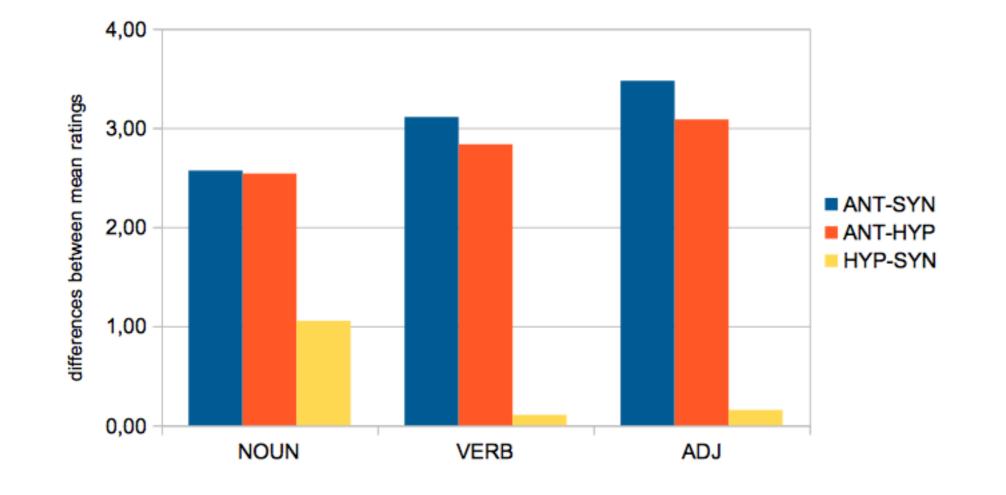
Experiment 2: Rating of relation pairs (examples)

Target Pair		Generation	ANT	SYN	HYP	Differenc	e
NOUN	Arzt/Beruf (doctor/profession)	HYP: 5	0.8	1.1	4.7	HYP-SYN	3.6
	<i>Arzt/Beruf</i> (doctor/profession) <i>Verhandlung/Gespräch</i> (negotiation/conversation)	HYP: 4	0.6	2.8	4.0	HYP-SYN	1.2
VERB	befehlen/gehorchen (command/obey)	ANT: 6	4.4	0.3	0.1	ANT-SYN	4.1
	schmieren/streichen (grease/paint)	SYN: 4	0.9	2.2	3.3	SYN-HYP	-1.1
	faul/fleißig (lazy/diligent)	ANT: 8	5.0	0.5	0.0	ANT-SYN	4.5

- Nearest-centroid classifier (also known as *Rocchio classifier*)
- -Use training pairs to initiate relation class centroids.
- -Assign test pairs to nearest class centroid.
- Evaluation: 5-fold cross-validation, precision values.

■ Window-COS ■ Window-DIFF ■ Window-PROD ■ Pattern

Results:


- Salience of feature types depends on the word class.
- Pattern information outperforms window information (nouns + adjectives).
- Automatic classification is best for natural relations (nouns + adjectives).

ADJ *gewitzt/naiv* (smart/naïve)

3.0 0.3 0.4 ANT-SYN 2.7 **ANT: 3**

Distinction between relation pairs

How well do experiment participants distinguish between paradigmatic relations? \rightarrow differences in mean ratings across relation pairs

Verbs are different.

References

Stefan Evert. The Statistics of Word Co-Occurrences: Word Pairs and Collocations. PhD thesis, Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, 2005. Gertrud Faaß & Kerstin Eckart. SdeWaC – A Corpus of Parsable Sentences from the Web. In Proceedings of GSCL, pages 61–68, Darmstadt, Germany, 2013. John R. Firth. *Papers in Linguistics 1934-51*. Longmans, London, UK, 1957. Zellig Harris. Distributional structure. Word, 10(23):146–162, 1954. George A. Miller & Christiane Fellbaum. Semantic Networks of English. Cognition, 41:197–229, 1991. M. Lynne Murphy. Semantic Relations and the Lexicon. Cambridge University Press, 2003. Roland Schäfer & Felix Bildhauer. Building Large Corpora from the Web Using a New Efficient Tool Chain. In Proceedings of LREC, pages 486–493, 2012. Silke Scheible & Sabine Schulte im Walde. A Database of Paradigmatic Semantic Relation Pairs for German Nouns, Verbs and Adjectives. In Proceedings of the COLING Workshop on Lexical and Grammatical Resources for Language *Processing*, pages 111–119, 2014. Peter D. Turney & Patrick Pantel. From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research, 37:141–188, 2010.