Computational Approaches to Semantic Relatedness

Antrittsvorlesung Universität des Saarlandes

PD Dr. Sabine Schulte im Walde

Institut für Maschinelle Sprachverarbeitung Universität Stuttgart

30. November 2009

∃ ⊳

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Semantic Relatedness

• Words and larger linguistic units may be semantically related:

< ∃→

æ

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Semantic Relatedness

- Words and larger linguistic units may be semantically related:
 - toll-spitze-mies-verbesserungswürdig (adj, great → bad)
 - Amsel–Vogel 'blackbird–bird'
 - auftrinken-seinen Becher leeren 'drink up'

Image: Second second

э

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

- Words and larger linguistic units may be semantically related:
 - toll-spitze-mies-verbesserungswürdig (adj, great → bad)
 - Amsel-Vogel 'blackbird-bird'
 - auftrinken-seinen Becher leeren 'drink up'
- Lexical semantics is the study of how and what the words of a language denote → word meaning and word relatedness

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

- Words and larger linguistic units may be semantically related:
 - toll-spitze-mies-verbesserungswürdig (adj, great → bad)
 - Amsel–Vogel 'blackbird–bird'
 - auftrinken-seinen Becher leeren 'drink up'
- Lexical semantics is the study of how and what the words of a language denote → word meaning and word relatedness
- · Words: single words, multi-words, word senses

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

- Words and larger linguistic units may be semantically related:
 - toll-spitze-mies-verbesserungswürdig (adj, great → bad)
 - Amsel–Vogel 'blackbird–bird'
 - auftrinken-seinen Becher leeren 'drink up'
- Lexical semantics is the study of how and what the words of a language denote → word meaning and word relatedness
- · Words: single words, multi-words, word senses
- Ambiguity: multiple word senses, e.g.,
 - abnehmen → 'lose weight' (Diät) vs. 'support' (übernehmen) vs. 'take' (nehmen) vs. 'believe' (glauben)

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expression:

Semantic Relatedness

• Instances of semantic relatedness:

(문) 문

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Semantic Relatedness

- Instances of semantic relatedness:
 - underspecified semantic relatedness across a set of words: toll-spitze-mies-verbesserungswürdig kaufen-verkaufen-kosten-bezahlen

글 > 글

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Semantic Relatedness

- Instances of semantic relatedness:
 - underspecified semantic relatedness across a set of words: toll-spitze-mies-verbesserungswürdig kaufen-verkaufen-kosten-bezahlen
 - explicit semantic relations between words: Amsel–Vogel; joggen–rennen; zuschließen–schließen

3

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

- Instances of semantic relatedness:
 - underspecified semantic relatedness across a set of words: toll-spitze-mies-verbesserungswürdig kaufen-verkaufen-kosten-bezahlen
 - explicit semantic relations between words: Amsel–Vogel; joggen–rennen; zuschließen–schließen
 - explicit semantic relations between the parts of multi-words: *Küchenmesser, Brotmesser*

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

- Instances of semantic relatedness:
 - underspecified semantic relatedness across a set of words: toll-spitze-mies-verbesserungswürdig kaufen-verkaufen-kosten-bezahlen
 - explicit semantic relations between words: Amsel–Vogel; joggen–rennen; zuschließen–schließen
 - explicit semantic relations between the parts of multi-words: *Küchenmesser, Brotmesser*
 - degree of semantic relatedness between multi-words and their parts: zuschließen-zu+schließen vs. anfangen-an+fangen Brotmesser-Brot+Messer vs. Klatschmohn-Klatsch+Mohn

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Semantic Relatedness

• Why is this interesting?

→ theoretical investigations (linguistic and cognitive):
 how do humans perceive and express semantic relatedness?
 → semantic relatedness in computational tasks and applications:
 lexicography (thesaurus construction; compositionality);

question answering, e.g., Which company produces wooden doors?

• How difficult is the task?

 \rightsquigarrow human judgements, cf.

belästigen–nerven; abhalten–anhalten; einsetzen–setzen; sentence–decision

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Synonymy

- Synonymy: words with identical or similar meaning
- Absolute synonymy occurs rarely
- Near-synonymy is pervasive
- Shades of meaning differences between two near-synonyms, e.g.,
 - emphasis: Kleinkrieg-Fehde; enemy-foe
 - style: hacke-betrunken; pissed-drunk
 - subcategorisation: helfen-unterstützen; give-donate
- Paraphrases: alternative ways to convey the same meaning, including and going beyond the word/phrase level, e.g., Das Glas ist halb voll. ↔ Das Glas ist halb leer. The glass is half full. ↔ The glass is half empty.

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Antonymy

- Antonymy: words with opposite meaning
 - complementary/contradictory: negation of one predication entails its contradiction succeed-fail/gelingen-misslingen; true-false/richtig-falsch
 - reversive: positions or motion in opposite dimensions appear-disappear/auftauchen-verschwinden; forwards-backwards/vorwärts-rückwärts
 - contrary: assertion of one predicate entails denial of its contrary, but both contraries may be false red-green/rot-grün; love-hate/lieben-hassen
 - conversive: same situation seen from different perspectives buy-sell/kaufen-verkaufen; teacher-pupil/Lehrer-Schüler

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Hypernymy & Troponymy

- Hypernymy/Hyponymy: words with super-/sub-ordinated meaning
- Hyponym is a kind of a hypernym, e.g. robin-bird; coffee-beverage; beetle-car Amsel-Vogel; Kaffee-Getränk; Golf-Auto
- Co-Hyponymy: words with the same hypernym, e.g. *cat-dog; coffee-tea; Katze-Hund; Kaffee-Tee*
- Troponymy is hypernymy for verbs: to v_{troponym} is to v_{superordinate} in some particular manner jog-run; cook-create; joggen-rennen; kochen-kreieren
- Recursive application of hypernymy generates a hierarchy

∃ ≥ >

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Scripts and Frames

- Script: sequence of events in a particular context, such as everyday situations (Schank & Abelson)
- Specialisation of a frame (Minsky)
- Related to frame semantics (Fillmore): frames as the background and situational knowledge needed for understanding a word or expression
- Relating participants in a situation to each other
- Abstracting over semantic relations such as synonymy, antonymy, causality, etc.

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Scripts and Frames

• Example of a script: restaurant

- Scene 1: Entering: guest goes into restaurant, guest looks at tables, guest thinks where to sit, guest goes to table
- Scene 2: Ordering: guest gets menu, guest chooses food, guest gives signal to waiter, waiter comes to table, guest orders food
- Scene 3: Eating: waiter brings food, guest eats food
- Scene 4: Exiting: waiter brings check, waiter gives check to guest, guest gives money to waiter, guest leaves restaurant

• Example of a frame: cooking creation

A cook creates a produced food from (raw) ingredients. The heating instrument and/or the container may also be specified.

lexical units: bake, baker, concoct, cook up, cook, make, prepare, put together, whip up, etc.

- A 🖻 🕨

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Multi-Word Expressions

- Multi-word expression: any phrase that *may not be* entirely predictable on the basis of standard rules and lexica
- Compound nouns: head noun and modifier noun
 - examples: Küchenmesser, Taschenmesser, Brotmesser, Gradmesser
 - semantic relations between compound parts (e.g., purpose)
 - degree of compositionality with respect to head and modifier
- Particle verbs: particle and base verb
 - word class of particle: preposition, adverb, noun, adjective, etc.
 - preposition-based examples: abholen, einsetzen, anfangen
 - · degree of compositionality with respect to particle and base verb

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Compositionality

- Degree of compositionality: to which extent is the meaning of the multi-word related to the meanings of its parts?
- Semantic relatedness as index for degree of compositionality
- Distributional identification: comparison of properties of parts and whole

Overview Examples of Semantic Relatedness Semantic Relatedness in Multi-Word Expressions

Summary: Semantic Relatedness

- Paradigmatic semantic relations between word senses: synonymy, antonymy, hypernymy
- Paradigmatic vs. syntagmatic: vertical, set-based substitutability wrt. elements of the same class (*Katze/Hund/Tier; cat/dog/animal*) vs. horizontal, syntactic sequence of elements (*Eis essen; aus und vorbei; eat ice-cream*)
- Situation-based semantic relatedness across word classes, e.g., backen, Küche, Koch, Herd; bake, kitchen, cook, oven, etc.
- Words vs. word senses vs. phrases: abnehmen–zunehmen/halten/glauben; Maus–Computer/Katze; ins Gras beißen–sterben; auftrinken–seinen Becher leeren
- Semantic relatedness of multi-word expressions: between and to parts, e.g., Küchenmesser vs. Klatschmohn; abnehmen vs. anfangen

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Resources and Approaches: Overview

- How do we know (automatically) the semantic relation between two word senses?
- Lexical acquisition: (automatic) definition of linguistic information on lexical items
- Sources for lexical acquisition:
 - (hand-coded) language resources, such as dictionaries, thesauri, taxonomies, ontologies, etc.
 - (annotated) corpus data

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Corpus-based Approaches: Overview

- Distributional semantics via corpus co-occurrence
- Distributional models:
 - Vector space models
 - Syntagmatic pattern models
 - Graph models
 - Semantic classification

글 > 글

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Distributional Semantics

- Contexts of a linguistic unit tell us something about the meaning of the linguistic unit
- Example: corpus can tell us that one can buy, peal, and eat an apple
- Distributional hypothesis:

You shall know a word by the company it keeps. (Firth, 1957)

Each language can be described in terms of a distributional structure, i.e., in terms of the occurrence of parts relative to other parts. (Harris, 1968)

• Problem: lack of commonsense knowledge

inferential (i.e., how to use language distributionally) vs. referential (incorporating world knowledge) abilities (Marconi, 1997), e.g., *Ananas–gelb; auftauen–Wasser; ananas–yellow; defrost–water*

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Co-Occurrence

- Context refers to corpus co-occurrence
- Paradigmatic semantic relatedness: words appear in similar contexts (→ similar corpus co-occurrence)
 Daddy pealed the {apple, pear, banana, fruit} for Jan.
- Syntagmatic semantic relatedness: words appear together (→ joint corpus co-occurrence) He explained patiently until she understood.
- The two do not exclude each other *He likes all fruit but oranges.*
- Procedure: identify corpus co-occurrence features and feed into computational model to induce semantic relatedness

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Examples: Co-Occurrence Features

Co-occurrence matrix for vector space model; $sim(w_i, w_j) = f(\vec{v_{w_i}}, \vec{v_{w_j}})$:

	collect	imported	peal	read	ripe	rotten	salad
apple	91	2	358	0	97	201	96
banana	3	135	221	5	133	89	54
book	188	74	2	415	0	44	1
fruit	1	62	43	0	54	199	286
leaf	23	0	0	11	21	157	1
orange	0	111	299	2	111	32	25
pear	32	18	37	1	143	34	65

Syntagmatic pattern for hypernymy (Hearst, 1992): Noun_i such as Noun₁, Noun₂, ..., Noun_n, e.g., fruit such as apples, bananas, pears, oranges

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Distributional Models

Choice and aspects of distributional models:

- Selection of features (bag-of-words, syntax-based, human-based)
- Selection of learning algorithm
- Problem: ambiguity

Example approaches:

- 1 Semantic classification of German verbs
- 2 Distributional model of German particle verbs
- 3 Cognitive aspects

4 E b

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Semantic Classification

- Groupings of words according to semantic properties
- Classes refer to general semantic level; idiosyncratic lexical semantic properties are underspecified; semantic relations are underspecified
- Intuitive examples:

motion with a vehicle: drive, fly, row, etc. animal: bird, robin, penguin, dog, dachshund, etc. temperature: hot, cold, tepid, etc.

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Automatic Classification

- $\bullet \ Objects \to Classes$
- Objects in common classes: as similar as possible
- Objects in different classes: as dissimilar as possible
- Difficulty: selection of classification algorithm and parameter setting (incl. features)

Image: Second second

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Overview: Verb Classification

- Hypothesis: verb behaviour ↔ verb meaning aspects
- Distributional verb descriptions: syntactic frames, prepositional phrases, selectional preferences
- Clustering with k-Means algorithm
- Result: semantic verb classes

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Subcategorisation Frame Distribution

	Frame Type	Freq
glauben	NP_{nom} - S_{dass}	1,929
'think, believe'	$NP_{nom}-S_2$	1,888
	NP _{nom} -PP	687
	NP _{nom}	608
	NP _{nom} -NP _{acc}	555
	NP _{nom} -INF	346
	NP _{nom} -NP _{dat}	234
	NP _{nom} -NP _{acc} -NP _{dat}	160
	NP_{nom} - NP_{dat} - S_2	70
	NP _{nom} -NP _{acc} -INF	62

< ∃→

æ

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Nominal Preference Distributions

	No	Freq	
reden über _{Acc}	Geld	'money'	19
'talk about'	Politik	'politics'	14
	Problem	'problem'	13
	Thema	'topic'	10
	Inhalt	'content'	9
	Koalition	'coalition'	6
	Ding	'thing'	5
	Freiheit	'freedom'	5
	Kunst	'art'	5
	Film	'movie'	5

< ∃⇒

æ

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

k-Means Algorithm

- Unsupervised hard clustering
- *n* objects $\rightarrow k$ clusters
- Iterative re-organisation of cluster membership:
 - 1 Initial cluster assignment
 - 2 Calculation of cluster centroids
 - **3** Determining closest cluster (centroid)
 - Re-arrangement of cluster membership; go to step 2
- Parameters: number of clusters, similarity measures

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Clustering Example: Random Input

- konsumieren kriegen vermuten
- anfangen
- ahnen bekanntgeben bestehen fahren fliegen liegen nieseln pochen
- aufhören bekommen erhalten essen insistieren regnen segeln vermitteln
- beginnen freuen interpretieren
- rudern saufen schneien ärgern
- eröffnen folgen glauben
- zustellen
- charakterisieren dämmern stehen
- blitzen verkünden wissen
- beschreiben dienen donnern schließen unterstützen
- beenden darstellen liegen sitzen
- ankündigen denken enden lesen schicken öffnen
- beharren bringen erlangen helfen trinken

4 E b

э

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Clustering Example: Output

- ahnen vermuten wissen Propositional Attitude
- denken glauben Propositional Attitude
- anfangen aufhören beginnen beharren enden insistieren rudern Aspect
- liegen sitzen stehen Position
- dienen folgen helfen Support
- nieseln regnen schneien Weather
- dämmern
- blitzen donnern segeln Weather
- bestehen fahren fliegen pochen Insistence, Manner of Motion
- freuen ärgern Emotion
- essen konsumieren saufen trinken verkünden Consumption
- bringen eröffnen lesen liefern schicken schließen vermitteln öffnen Supply
- ankündigen beenden bekanntgeben bekommen beschreiben charakterisieren darstellen erhalten erlangen interpretieren kriegen unterstützen – Description, Obtain
- zustellen

マロト イヨト イヨト

э

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Summary: Semantic Classification

- Considerable agreement between clustering results and manual classification \rightarrow successful linguistic and technical parameters
- Difficult compromise between general and idiosyncratic properties
- Ambiguity not modelled implicitely
- Underspecified semantic relations
- Classes cover synonymy, antonymy, hypernymy, etc.
- Relation of classes to situations? ermorden 'assassinate', erschießen 'shoot', töten 'kill', festnehmen 'arrest', verhaften 'arrest', befragen 'interrogate', entlassen 'release'
- Semantic classes per se vs. with respect to task or application

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

German Particle Verbs (PVs)

- Focus on preposition particles: *ab*, *an*, *auf*, *aus*, *bei*, *durch*, *ein*, *los*, *nach*, *über*, *um*, *unter*, *vor*, *wider*, *zu*
- Examples: abholen, anfangen, einführen
- Syntax:
 - · PVs may change behaviour of base verbs
 - changes are quite regular (Stiebels, 1996; Aldinger, 2004)
- Semantics: transparent vs. opaque PV senses
 - *abholen* 'fetch' ↔ *holen* 'fetch'
 - anfangen 'begin' ↔ fangen 'catch'
 - *einsetzen* 'insert, begin' ↔ *setzen* 'put/sit (down)'

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Example: Syntactic Change (Addition)

- Sie lächelt. 'She smiles.'
- * Sie lächelt [*NP_{acc}* ihre Mutter]. 'She smiles her mother.'
- Sie lächelt [*NP_{acc}* ihre Mutter] an. 'She smiles at her mother.'

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Distributional Model of German Particle Verbs

- Problem: change of behaviour at the syntax-semantics interface

 (a) einsetzen ↔ anfangen, beginnen (opaque)
 (b) einsetzen ↔ setzen (transparent)
- Goal: predict meaning and compositionality of particle verbs
- Strategy 0: avoid frame-incorporating distributional features
- Strategy 1: syntax-semantic change of arguments is surprisingly regular, even for opaque particle verbs → model and exploit syntax-semantic transfer patterns
- Strategy 2: combine distributional models

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Strategy 0

- Model verbs (PV and BV) by nominal features, including and excluding syntax
- Predict meaning by determining nearest neighbours of PVs, based on distributional measures: sim(w_i, w_j) = f(v_{w_i}, v_{w_j})
- Relevant information in the distributions are nouns; references to argument structure (functions) are minor but important
- Window features are worse than nominal argument features
- Types of semantic relations (according to gold standard variation): GermaNet: 70% hypernymes, 22% synonyms, 1% antonyms; synonym/antonym dictionary: 43% synonyms, 48% antonyms;

associations: variable picture, e.g., backward presupposition (*abstürzen/fliegen* 'crash'/'fly'), cause (*einbrocken/auslöffeln* 'get into/out of trouble'), script (*einschenken/trinken* 'pour'/'drink')

イロト イポト イヨト イヨト

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Strategy 1

- Model syntax-semantic transfer patterns
- Predict degree of compositionality
- Gold standard: human judgements on compositionality, e.g., *umbringen*: 1.625; *abbestellen*: 6.750; *nachdrucken*: 9.250
- Experiment 1 (baseline): divergence of PV subcategorisation from average particle-based frame distribution → fails, because transfer applies to opaque as well as transparent PVs, plus ambiguity
- Experiment 2: overlap of nominal fillers in frame-argument combinations, e.g.
 hängen/NPnom-PP ↔ aufhängen/NPnom-NPacc-PP: Bild, Plakat, Mörder
 → fails, for data sparseness, frequency and ambiguity

- A 🖻 🕨

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Summary: Distributional Model of PVs

- Plain distributional model (nearest neighbours) in comparison to abstraction by classification
- German particle verbs are a challenge to distributional models
- Selectional preferences are key to induce PV meaning
- Problem: pervasive ambiguity of particles and base verbs
- Side effect of gold standard definitions: variety of semantic relations among nearest neighbours

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Human Data on Semantic Relatedness

Semantic memory and computational semantic relatedness

1 Human judgements on semantic relatedness/relations;

- \rightsquigarrow gold standard for evaluation purposes, e.g., compositionality
- \rightsquigarrow measure of difficulty of the task, i.e., wrt ambiguity
 - degree of compositionality of *einsetzen* (1-10)?
 - belästigen-nerven : synonymy? hypernymy?

 Pluman associations reflect meaning components of words; psycholinguistic research on semantic memory
 → improved choice of salient distributional features?
 → gold standard of relatedness for evaluation or as model seeds

- herausfinden \rightsquigarrow erkennen (6), entdecken (6), forschen (5), etc.
- Pfeife → Tabak (17), Rauch (14), Opa (9), Zigarette (2), etc.

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Human Associations and Feature Choice

Associations reflect linguistic and conceptual features and therefore model verb meaning aspects. \rightsquigarrow Assumption: If we can model associations by distributional features, we can build salient models of word meaning and word relatedness.

Class	Features
<i>bedauern</i> 'regret', <i>heulen</i> 'cry',	<i>Trauer</i> 'mourning', <i>weinen</i> 'cry',
<i>jammern</i> 'moan', <i>klagen</i> 'complain,	<i>traurig</i> 'sad', <i>Tränen</i> 'tears',
moan, sue', <i>verzweifeln</i> 'become	<i>jammern</i> 'moan', <i>Angst</i> 'fear',
desperate', <i>weinen</i> 'cry'	<i>Mitleid</i> 'pity', <i>Schmerz</i> 'pain', etc.
abnehmen 'lose weight',	Diät 'diet', Gewicht 'weight',
abspecken 'lose weight',	dick 'fat', abnehmen 'lose weight',
<i>zunehmen</i> 'gain weight'	<i>Waage</i> 'scale', <i>Essen</i> 'food',
	<i>essen</i> 'eat', <i>Sport</i> 'sports',
	dünn 'thin', <i>Fett</i> 'fat', etc.

Resources and Approaches: Overview Semantic Classification of German Verbs Distributional Models of German Particle Verbs Cognitive Aspects

Summary: Cognitive Aspects

- Human associations provide data on semantic relatedness: a priori: underspecified; annotated: specified
- Exploit associations as feature indicators, model seeds, for evaluation
- Human judgements provide data on semantic relatedness
- Exploit judgements as compositionality rankings and relation rankings for evaluation

Overall Summary

- Paradigmatic vs. situation semantic relations
- Distributional semantics:
 - Vector space models and syntagmatic patterns
 - Vector similarity (nearest neighbours) and generalisation (classification)
- Distributional co-occurrence features to model semantic relatedness
- Studies: semantic classification and particle verb compositionality
 - semantic classification: successful but underspecified relations
 - particle verb compositionality: first insights; need to model syn/sem transfer or highly ambiguous semantic classes of particles and bases
- Human associations provide keys to distributional knowledge and point to its commonsense limits

4 E b

Summary Future Work

Future Work

- Distinguish and combine distributional feature groups:
 - direct co-occurrence (words, syntax-based)
 - abstraction over co-occurrence (frame types, selectional preferences)
 - higher-order co-occurrence
 - syntagmatic patterns

→→ Model underspecified semantic relatedness across a set of words to distinguish synonymy, antonomy and situational relations *kaufen-erwerben* vs. *kaufen-verkaufen* vs. *kaufen-verkaufen-kosten-bezahlen*

→ Model explicit semantic relations between words *Amsel–Vogel*; joggen–rennen

- A 🖻 🕨

э

Summary Future Work

Future Work

- Model the degree of semantic relatedness between multi-words and their parts:
 - compositionality of German particle verbs:
 - adjust features to reduce syntactic information
 - supervised approach on particle-sense-annotated data to learn transfer patterns from annotated data and to predict compositionality
 - combination of distributional descriptions or unsupervised classifications of particles and base verbs
 - compositionality of German compound nouns: combine evidence from part-whole pairings:
 - variability of compound parts by related nouns (e.g., co-hyponyms), cf. *Handwerk* vs. *Fußwerk*, and *Kunsthalle* vs. *Kunstgebäude*
 - featural similarity of compound parts, cf. *Kunst* and *Werk* appear in art domain
 - featural similarity of compound and head noun, e.g., *Kunstwerk* and *Werk*

- A 🖻 🕨

э

Summary Future Work

Future Work

- Interaction between human data, feature selection, and classification approaches
- Selection and combination of distributional co-occurrence models
- Use (annotated) human data as seeds and gold standard
- Computational approaches: nearest neighbours, semantic classification, ensemble classification, clustering with constraints
- Vary sources: web corpora and encyclopedias (i.e., wikis)
- Role of frequency and ambiguity