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Abstract

Algorithms for (nondeterministic) finite-state tree automata (NTA) are often tested
on random NTA, in which all internal transitions are equiprobable. The run-time results
obtained in this manner are usually overly optimistic as most such generated random NTA
are trivial in the sense that the number of states of an equivalent minimal deterministic
finite-state tree automaton is extremely small. It is demonstrated that nontrivial random
NTA are obtained only for a narrow band of transition probabilities. Moreover, an ana-
lytical analysis yields a formula to approximate the transition probability that yields the
most complex random NTA.

1 Introduction

Nondeterministic finite-state tree automata (NTA) play a major role in several areas of natu-
ral language processing. For example, the grammars of the Berkeley parser [9] are trivially
(weighted) NTA. Moreover, syntax-based approaches to statistical machine translation com-
monly use weighted NTA. Toolkits for NTA exist by now [8] and allow users to easily run
experiments. However, algorithms like determinization typically cannot be tested on real-word
examples (like the Berkeley parser grammars) due to their complexity. In such cases, the
inputs are often random NTA, which are typically created by fixing densities, which are the
probabilities that any given potential transition (of a certain group) is indeed a transition of
the generated NTA [see [10] and [7] for the generation of random finite-state string automata].

It is known [2] that for string automata most random automata are trivial in the sense that
the equivalent minimal deterministic finite-state string automaton is extremely small. Here, we
observe the same effect for NTA, which means that testing algorithms on random NTA also has
to be done carefully to avoid vastly underestimating their actual run-time. To simplify such
experiments and to make them more representative we provide both empirical and analytical
evidence for the nontrivial (difficult) cases.

In the empirical evaluation we create many random NTA with a given number n of (useful)
states using a given transition density d. We then determinize and minimize them, and record
the number of states of the resulting minimal deterministic finite-state tree automaton (DTA).
As expected, outside a narrow density band the randomly generated NTA yield very small
equivalent minimal DTA, which means that they are in a sense trivial.1 It can be observed that

∗Financially supported by the German Research Foundation (DFG) grant MA / 4959 / 1-1.
1Trivial here does not mean that the recognized tree language is uninteresting, but rather it only relates to

its complexity.
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if the density is above the upper limit of the band, then the NTA accept almost everything,
whereas NTA with densities below the lower limit accept almost nothing.2

In the analytical evaluation, given a number n of states, we compute densities d2(n) and d0(n),
for which we expect the most difficult NTA. Looking at the empirical results, the formula pre-
dicts the narrow density band belonging to complex random NTA very well. Consequently, we
promote experiments with random NTA that use exactly these predicted densities in order to
avoid experiments with (only) trivial NTA.

Finally, we discuss how parameter changes affect our results. For example, the addition of
another binary input symbol does not move the interesting narrow density band, but it generally
does increase the sizes of the obtained minimal DTA. Moreover, it shows that whenever we
obtain large DTA before minimization, then those DTA remain large even after minimization.
This demonstrates that our implementation of determinization is rather efficient.

2 Finite tree automata

The power set of a set S is P(S) = {S′ | S′ ⊆ S}. The set of nonnegative integers is denoted
by N. An alphabet is simply a finite set of symbols. A ranked alphabet (Σ, rk) consists of
an alphabet Σ and a mapping rk: Σ → N, which assigns a rank to each symbol. For every
k ∈ N, we let Σk = {σ ∈ Σ | rk(σ) = k} be the set of symbols of rank k. We also write σ(k) to
indicate that the symbol σ has rank rk(σ) = k. To keep the presentation simple, we typically
write just Σ for the ranked alphabet (Σ, rk) and assume that the ranking ‘rk’ is clear from the
context. Moreover, we often drop obvious universal quantifications like k ∈ N in expressions
like σ ∈ Σk. Our trees have node labels taken from a ranked alphabet Σ. The rank of a
symbol σ ∈ Σ determines the number of direct children of all nodes labeled σ. Given a set T ,
we write Σ(T ) for the set {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T}. The set TΣ of Σ-trees is
defined as the smallest set T such that Σ(T ) ⊆ T .

Next, we recall finite tree automata [4, 5] and the required standard constructions. In
general, finite tree automata (NTA) offer an efficient representation of the regular tree languages.
We distinguish a (bottom-up) deterministic variant called deterministic tree automaton (DTA),
which will be used in our size measurements. A finite tree automaton (NTA) is a system
(Q,Σ, F, P ), where (i) Q is a finite set of states, (ii) Σ is a ranked alphabet of input symbols,
(iii) F ⊆ Q is a set of final states, and (iv) P ⊆ Σ(Q) × Q is a finite set of transitions. It is
deterministic if for every t ∈ Σ(Q) there exists at most one q ∈ Q such that (t, q) ∈ P . We
often write a transition (t, q) ∈ Σ(Q) × Q as t → q. The size of the NTA M = (Q,Σ, F, P )
is |M | = |Q|. This is arguably a crude measure for the ‘size’, but it will mostly be used for
DTA, where it is commonly used.

Example 1. As illustration we consider the NTA Mex = ({0, 1, 2, 3},Σ, {3}, P ), where
Σ = {σ(2), α(0)} and P contains the transitions

α→ 0 α→ 2 σ(0, 0)→ 1 σ(1, 0)→ 1 σ(1, 2)→ 3 σ(1, 3)→ 3 .

This NTA is not deterministic.

In the following, let M = (Q,Σ, F, P ) be an NTA. For every σ ∈ Σk, let σ : P(Q)k → P(Q)
be the mapping defined for all Q1, . . . , Qk ⊆ Q by

σ(Q1, . . . , Qk) = {q | ∀1 ≤ i ≤ k, ∃qi ∈ Qi : σ(q1, . . . , qk)→ q ∈ P} .
2This observation also justifies calling them trivial.
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Next, we define the action of the transitions on a tree t ∈ TΣ. Let P : TΣ → P(Q) be such
that P (σ(t1, . . . , tk)) = σ(P (t1), . . . , P (tk)) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ. The NTA M
accepts the tree language L(M), which is given by L(M) = {t ∈ TΣ | P (t)∩F 6= ∅}. Two NTA
M1 and M2 are equivalent if L(M1) = L(M2).

Example 2. For the NTA of Example 1 we have P (α) = {0, 2} and P (σ(α, α)) = {1}. More-
over, σ(σ(σ(α, α), α), α) ∈ L(Mex).

For our experiments, we generate a random NTA, then determinize it and compute the
number of states of an equivalent minimal dta. Let us quickly recall the relevant constructions.

Definition 3. For an NTA M = (Q,Σ, F, P ), we construct the DTA P(M) = (P(Q),Σ, F ′, P ′)
such that F ′ = {Q′ ⊆ Q | Q′ ∩ F 6= ∅} and

P ′ = {σ(Q1, . . . , Qk)→ σ(Q1, . . . , Qk) | σ ∈ Σk, Q1, . . . , Qk ⊆ Q} .

Theorem 4 (see [3, Theorem 1.10]). P(M) is a DTA that is equivalent to M .

Example 5. For the NTA of Example 1 an equivalent DTA is P(Mex) = (P(Q),Σ, F ′, P ′),3

where F ′ = {3, 13, 23, 123} and the following (non-trivial) transitions in P ′:

α→ 02 σ(02, 02)→ 1 σ(1, 02)→ 13 σ(13, 02)→ 13 σ(1, 13)→ 3 σ(1, 3)→ 3 .

A DTA is minimal if there is no strictly smaller equivalent DTA. The DTA in Example 5 is
minimal. It is known [1] that for every DTA we can compute an equivalent minimal DTA.

3 Random NTA generation

First, we describe how we generate random NTA.4 We closely follow the random generation
outlined in [10], augmented by density parameters d2 and d0, which is similar to the setup
of [7]. Both methods [10, 7] are discussed in [2], where they are applied to finite-state string
automata [11]. For an event E, let π(E) be the probability of E. To keep the presentation
simple, we assume that the ranked alphabet Σ of input symbols is binary (i.e., Σ = Σ2 ∪Σ0).5

Note that all regular tree languages [4, 5] can be encoded using a binary ranked alphabet.
In order to randomly generate an NTA M = (Q,Σ, F, P ) with n = |Q| states and binary and
nullary transition densities d2 and d0, each transition (incl. the target state) is a random variable
and each state is a random variable representing whether it is final or not. More precisely, we
use the following approach:
• Q = {1, . . . , n},
• π(q ∈ F ) = 1

2 for all q ∈ Q (i.e., for each state q the probability that it is final is 1
2 ),

• π(α→ q ∈ P ) = d0 for all nullary α ∈ Σ0 and q ∈ Q, and
• π(σ(q1, q2)→ q ∈ P ) = d2 for all binary symbols σ ∈ Σ2 and all states q1, q2, q ∈ Q.

If the such created NTA is not trim6, then we start over and generate a new NTA. Thus, all
our randomly generated NTA indeed have n useful states.

3We abbreviate sets like {0, 2} to just 02.
4These NTA shall serve as test inputs for algorithms that operate on NTA such as determinization, bisim-

ulation minimization, etc. Naturally, the size of an equivalent minimal NTA would be an obvious complexity
measure for them, but it is PSpace-complete to determine it, and the size of the minimal equivalent DTA is
naturally always bigger, so trivial NTA according to our measure are also trivial under the minimal NTA size
measure.

5Our approach can easily be adjusted to accommodate non-binary ranked alphabets. We can imagine a model
in which only one density d governs all transitions, but this model requires a slightly more difficult analytical
analysis.

6The NTA M is trim if for every q ∈ Q there exists t ∈ TΣ such that q ∈ P (t).
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4 Analytical analysis

In this section, we present a short analytical analysis and compute densities, for which we
expect the randomly generated NTA to be non-trivial. More precisely, we estimate for which
densities the determinization (and subsequent minimization) returns the largest minimal DTA.
It is known from the generation of random finite-state string automata [2] that the largest
deterministic automata are obtained during determinization if each state q ∈ Q occurs with
probability 1

2 in the transition target of a transition, in which the source states are selected
uniformly at random. This observation was empirically confirmed multiple times by indepen-
dent research groups [7, 10, 2]. In addition, all transition target states are equiprobable for
input states that are drawn uniformly at random. This latter observation supports the maxi-
mality claim by arguments from information theory because if all target states of a transition
are equiprobable, then the entropy of the transition is maximal. While these facts support our
hypothesis (and subsequent conclusions), we also rely on an empirical evaluation in Section 5
to validate our findings.

As demonstrated in Section 2 the determinization constructs the state set P(Q). Let
M ′ = (P(Q),Σ, F ′, P ′) be the constructed DTA given the random NTA M with n = |Q|.7
According to our intuition, the probability that a state Q′ ∈ P(Q) is the transition target of
a given transition σ(Q1, Q2), where Q1 and Q2 are uniformly selected at random from P(Q),
should be 2−n [i.e., π(σ(Q1, Q2)→ Q′ ∈ P ′) = 2−n]. Thus, in particular, each given state q ∈ Q
is in the (real) successor state Q′′ of the given transition σ(Q1, Q2) with probability 1

2 [i.e.,
π(q ∈ Q′′) = 1

2 ]. Given σ ∈ Σ2 and q ∈ Q, let πσ,q = π(q ∈ Q′′), where Q1 and Q2 are
uniformly selected at random from P(Q) and Q′′ = σ(Q1, Q2). Similarly, given α ∈ Σ0 and
q ∈ Q, let πα,q = π(q ∈ α). It is easily seen that πσ,q = πσ′,q′ for all σ, σ′ ∈ Σ2 and q, q′ ∈ Q
because in our generation model all σ-transitions in M with σ ∈ Σ2 are equiprobable.8 Thus,
we simply write π2 instead of πσ,q. The same property holds for nullary symbols, so we hence-
forth write π0 for πα,q. Moreover, as in the previous section, let n be the number of states of
the original random NTA, and let d2 and d0 be the transition densities of it.

Theorem 6. If d2 = 4(1− n2√
.5) and d0 = 1

2 , then π2 = π0 = 1
2 .

Proof. We start with π0. Let α ∈ Σ0 and q ∈ Q. Then π(q ∈ α) = π(α→ q ∈ P ) = d0 = 1
2 as

required. For π2 let Q1, Q2 ∈ P(Q) be selected uniformly at random, σ ∈ Σ2, and q ∈ Q. Then

π(q ∈ σ(Q1, Q2)) = 1− π(q /∈ σ(Q1, Q2))

= 1−
∏

q1,q2∈Q

(
1− π(q1 ∈ Q1) · π(q2 ∈ Q2) · π(σ(q1, q2)→ q ∈ P )

)
= 1−

(
1− d2

4

)n2

= 1−
(
1− 1 +

n2√
.5
)n2

= 1− (
n2√
.5)n

2

=
1

2
.

Table 1 lists some values d2 computed according to Theorem 6 for the sizes n ∈ {2, . . . , 13}.

5 Empirical analysis

In this section, we want to confirm that the computed densities indeed represent the most
difficult instances for the random NTA constructed in Section 3. We use two settings:

7Note that the transitions of this DTA are random variables distributed according to the determinization
construction of Section 2 applied to M .

8Note that the individual σ-transitions of M ′ are not equiprobable. For example, the transition σ(∅, ∅)→ Q
is impossible.
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n d2 d′2 CI n d2 d′2 CI
2 .6364 .6264 [.5769,.6804] 8 .0431 .0408 [.0317,.0526]
3 .2965 .2570 [.2091,.3159] 9 .0341 .0342 [.0272,.0430]
4 .1696 .1334 [.1024,.1737] 10 .0276 .0282 [.0231,.0343]
5 .1094 .0855 [.0642,.1138] 11 .0228 .0251 [.0208,.0303]
6 .0763 .0635 [.0475,.0848] 12 .0192 .0212 [.0182,.0248]
7 .0562 .0501 [.0380,.0662] 13 .0164 .0189 [.0162,.0219]

Table 1: Expected density d2 (see Theorem 6) and observed density d′2 (see Section 5) for the
most complex NTA in Setting (A). We also report confidence intervals for the confidence level
p > .95.

2 4 6 7 8 9 10 11 12 13
.01 n/a n/a n/a 6.9 % 11.1 % 17.7 % 26.8 % 38.0 % 50.0 % 64.3 %
.05 n/a n/a 67.6 % 81.5 % 92.2 % 97.7 % 99.1 % 99.5 % 100.0 % 100.0 %
.1 n/a 54.1 % 90.1 % 96.0 % 98.6 % 98.6 % 99.7 % 99.9 % 99.8 % 100.0 %

.25 n/a 82.6 % 96.5 % 97.9 % 99.0 % 99.6 % 99.6 % 100.0 % 100.0 % 100.0 %
.5 46.9 % 88.0 % 96.3 % 97.7 % 99.5 % 99.6 % 99.8 % 99.7 % 99.9 % 100.0 %

Table 2: Ratio of trim NTA in a set of randomly generated NTA. Rows indicate various densities,
columns indicate the number of states. Where no data is available, “n/a” is given.

(A) Σ = {α(0), σ(2)}
(B) Σ = {α(0), σ(2), δ(2)}

For both settings (A) and (B) and varying densities d2 = e
x log dn

20 and d0 = 1
2 , where

dn = 4(1 − n2√
.5), for all 0 ≤ x ≤ 40 and sizes 2 ≤ n ≤ 13, we generated at least 40 trim

NTA. The ratio of trim NTA for various densities and state set sizes can be found in Table 2.
Generally, larger state sets and higher densities increase the chance of obtaining a trim NTA.
The choice of densities we made ensures that sufficiently many data points (in equally-spaced
steps on a logarithmic scale) will exist on both sides of the density that is predicted to generate
the most difficult instances. We will discuss why we favored the logarithmic scale over a linear
scale in the next paragraph. These NTA were subsequently determinized, minimized, and the
size of the DTA obtained by determinization as well as the size of the minimal equivalent DTA
were recorded. These operations were performed inside our new tree automata toolkit TALib9.

Our experiments confirm the theoretical predictions. A peak in the mean size of the DTA
obtained by determinization can be observed where it is predicted. Exemplary graphs for
setting (A) and n ∈ {8, 12} are presented in Figure 1 on a logarithmic scale. Since these graphs
appear to be log-normal distributions10, we computed the mean and the variance of these log-
normal distributions, interpreting the density as the random variable and the number of states
as the frequency. The relevant statistics are reported in Table 1 for setting (A). We found all
predicted densities to be in the confidence interval for the confidence level p > .95 (that is,
the predicted density is within 1.96σ distance of the observed mean, where σ is the standard
deviation).

It is worth noting that the location of the peak does not change between settings (A) and (B).
This means that the size of the alphabet of binary symbols does not influence the hardness of

9For more information about TALib, visit http://www.ims.uni-stuttgart.de/forschung/ressourcen/

werkzeuge/talib.en.html.
10A log-normal distribution is a distribution of a random variable whose logarithm is normally distributed. A

log-normal distribution usually arises as the product of independent normal distributions. We leave the question
of how exactly this distribution can be derived for further research.
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Figure 1: Graphs plotting the mean size of the equivalent DTA obtained by determinization
over the density for NTA of size 8 and 12.

the problem; the only difference is the size of the resulting DTA, which is generally larger in
setting (B). Also, minimization does not change the location of the peak, which means that
hard instances for determinization are also hard instances for minimization. In addition, we also
performed experiments that confirmed the similar result by [2] for finite-state string automata
using the string automata toolkit FSM<2.0> of [6].
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generation models for NFAs. J. Autom. Lang. Combin., 9(2/3):203–216, 2004.

[3] John Doner. Tree acceptors and some of their applications. J. Comput. System Sci., 4(5):406–451,
1970.

[4] Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiadó, Budapest, 1984.
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