
Synchronous Forest Substitution Grammars

Andreas Maletti?

Universität Stuttgart, Institute for Natural Language Processing
Pfaffenwaldring 5b, 70569 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. The expressive power of synchronous forest (tree-sequence)
substitution grammars (SFSG) is studied in relation to multi bottom-up
tree transducers (MBOT). It is proved that SFSG have exactly the same
expressive power as compositions of an inverse MBOT with an MBOT.
This result is used to derive complexity results for SFSG and the fact
that compositions of an MBOT with an inverse MBOT can compute tree
translations that cannot be computed by any SFSG, although the class
of tree translations computable by MBOT is closed under composition.

1 Introduction

Synchronous forest substitution grammars (SFSG) [19] or the rational binary
tree relations [17] computed by them received renewed interest recently due to
their applications in Chinese-to-English machine translation [21, 22]. The fact
that [19] and [17] arrived independently and with completely different back-
grounds at the same model shows that SFSG are a natural, practically rele-
vant, and theoretically interesting model for tree translations. Roughly speak-
ing, SFSG are a synchronous grammar formalism [2] that utilizes only first-order
substitution (as in a regular tree grammar [7, 8]), but allows several components
that develop simultaneously for both the input and the output side. This fea-
ture allows them to model linguistic discontinuity on both the source and target
language. The rational binary tree relations (or tree translations computed by
SFSG) can also be characterized by rational expressions [17] and automata [16].

Multi bottom-up tree transducers (MBOT) [1, 4] are restricted SFSG, in
which only the output side is allowed to have several components. They were
rediscovered in [5, 6], but were studied extensively by [3, 11, 1] already in the
70s and 80s. Their properties [13] are desirable in statistical syntax-based ma-
chine translation [10]. This led to a closer inspection [4, 15, 9] of their properties
in recent years. Overall, their expressive power is rather well-understood by now.

In this contribution, we investigate the expressive power of SFSG in terms
of MBOT. We show that the expressive power of SFSG coincides exactly with
that of compositions of an inverse MBOT followed by an MBOT. This charac-
terization is natural in terms of bimorphisms and shows that the input and the

? The author gratefully acknowledges the financial support by the German Research
Foundation (DFG) grant MA / 4959 / 1-1.

output tree are independently obtained by a full MBOT from an intermediate
tree language (which is always regular [7, 8]). This paves the way to complemen-
tary results. In particular, we derive the first complexity results for SFSG and
we demonstrate that the composition in the other order (first an MBOT followed
by an inverse MBOT) contains tree translations that cannot be computed by
any SFSG. This shows a limitation of MBOT, which are closed under composi-
tion [4]. Overall, we can thus also characterize the expressive power of SFSG by
an arbitrary chain of inverse MBOT followed by an arbitrary chain of MBOT.

2 Preliminaries

The set of nonnegative integers is N. We write [k] for the set {i ∈ N | 1 ≤ i ≤ k},
and we treat functions (or maps) as special relations. For all relations R ⊆ A×B
and subsets A′ ⊆ A, we let R(A′) = {b ∈ B | ∃a ∈ A′ : (a, b) ∈ R}. Moreover,

R−1 = {(b, a) | (a, b) ∈ R} dom(R) = R−1(B) ran(R) = dom(R−1) ,

which are called the inverse of R, the domain of R, and the range of R, respec-
tively. Given R1 ⊆ A×B and R2 ⊆ B ×C, the composition R1 ;R2 ⊆ A×C of
R1 and R2 is R1 ;R2 = {(a, c) ∈ A×C | ∃b ∈ B : (a, b) ∈ R1, (b, c) ∈ R2}. These
notions and notations are lifted to sets of relations as usual. Given a set Σ, the
set of all words over Σ is Σ∗, of which ε is the empty word. The concatenation
of two words u,w ∈ Σ∗ is denoted by uw. The length of a word w = σ1 · · ·σk
with σi ∈ Σ for all i ∈ [k] is |w| = k. We simply write wi for the ith letter of w
(i.e., wi = σi) for all i ∈ [k]. For every k ∈ N, we let Σk = {w ∈ Σ∗ | k = |w|}.

A ranked alphabet (Σ, rk) consists of an alphabet Σ and a map rk: Σ → N.
The symbol σ ∈ Σ has rank rk(σ), and we let Σk = {σ ∈ Σ | rk(σ) = k} for all
k ∈ N. We usually denote the ranked alphabet (Σ, rk) by just Σ and write σ(k) to
indicate that rk(σ) = k. The set TΣ(N) of all Σ-trees indexed by the set N is the
smallest set T such that N ⊆ T and σ(t) ∈ T for all σ ∈ Σ and t ∈ T rk(σ). Such a
sequence t of trees is also called forest. Consequently, a tree t is either an element
of N or it consists of a root node labeled σ followed by a forest t of rk(σ) children.
To improve the readability, we often write a forest t1 · · · tk as t1, . . . , tk. The
positions pos(t),pos(u) ⊆ N∗ of a tree t ∈ TΣ(N) and a forest u ∈ TΣ(N)∗

are inductively defined by (i) pos(n) = {ε}, (ii) pos(σ(t)) = {ε} ∪ pos(t), and
(iii) pos(u) =

⋃|u|
i=1{ip | p ∈ pos(ui)} for every n ∈ N , σ ∈ Σk, and t ∈ TΣ(N)k.

This yields an undesirable difference between pos(t) and pos(u) with u = (t).
Note that positions are totally ordered via the (standard) lexicographic ordering
on N∗. Let t, t′ ∈ TΣ(N) and p ∈ pos(t). The label of t at position p is t(p),
the subtree rooted at position p is t|p, and the tree obtained by replacing the
subtree at position p by t′ is denoted by t[t′]p. Formally, they are defined by
n(ε) = n|ε = n and n[t′]ε = t′ for every n ∈ N and

t(p) =

{
σ if p = ε

t(p) if p 6= ε
t|p =

{
t if p = ε

t|p if p 6= ε
t[t′]p =

{
t′ if p = ε

t[t′]p if p 6= ε

u(ip′) = ui(p′) u|ip′ = ui|p′ u[t′]ip′ = ui[t′]p′

for all t = σ(t) with σ ∈ Σk and t ∈ TΣ(N)k, u ∈ TΣ(N)∗, 1 ≤ i ≤ |u|, and
p′ ∈ pos(ui). As demonstrated, these notions are also defined for forests u. A
position p ∈ pos(t) is a leaf (in t) if p1 /∈ pos(t). For every S ⊆ N ∪ Σ, we let
posS(t) = {p ∈ pos(t) | t(p) ∈ S} and poss(t) = pos{s}(t) for every s ∈ N ∪ Σ.
The tree t ∈ TΣ(N) is linear in S ⊆ N if |poss(t)| ≤ 1 for every s ∈ S. The
variables of t are var(t) = {n ∈ N | posn(t) 6= ∅}, and var(u) =

⋃|u|
i=1 var(ui)

for all u ∈ TΣ(N)∗. Given S ⊆ N , u ∈ TΣ(N)∗, and θ : S → TΣ(N)∗ such that
|θ(s)| = |poss(u)| for every s ∈ S, the forest uθ is obtained from u by replacing
for every s ∈ S the occurrences poss(u) = {p1, . . . , pk} with p1 < · · · < pk of
(the leaf) s in u by the trees θ(s)1, . . . , θ(s)k, respectively.

Given ranked alphabets Σ and ∆, a mapping d :
⋃
k∈N Σk → (∆k ∪ {�})

is a delabeling if d(σ) ∈ ∆k for all σ ∈ Σk with k 6= 1. Thus, a delabel-
ing is similar to a relabeling [7, 8], but it can also erase unary symbols. It
induces a mapping d : TΣ → T∆ such that d(σ(t)) = d(t1) if d(σ) = � and
d(σ)(d(t1), . . . , d(tk)) otherwise for all σ ∈ Σk and t ∈ T kΣ . Finally, let us re-
call the regular tree languages [7, 8]. A regular tree grammar (RTG) is a tuple
G = (N,Σ, I,R) such that N is a finite set of nonterminals, Σ is a ranked al-
phabet of symbols, I ⊆ N is a set of initial nonterminals, and R ⊆ N × TΣ(N)
is a finite set of rules. A rule (n, r) ∈ R is typically written n → r, and for
every n ∈ N , we let Rn = {n → r | n → r ∈ R}. Given ξ, ζ ∈ TΣ(N) we
write ξ ⇒G ζ if there exists a a rule n → r ∈ R and a position p ∈ posn(ξ)
such that ζ = ξ[r]p. The regular tree grammar G generates the tree language
L(G) = {t ∈ TΣ | ∃n ∈ I : n ⇒∗G t}, where ⇒∗G is the reflexive and transitive
closure of ⇒G. A tree language L ⊆ TΣ is regular if there exists a regular tree
grammar G such that L = L(G). The class of regular tree languages is denoted
by Reg. Moreover, FTA denotes the class of partial identities computed by the
regular tree languages; i.e., FTA = {idL | L ∈ Reg}, where idL = {(t, t) | t ∈ L}.

3 Synchronous forest substitution grammars

The (stateful) synchronous forest substitution grammars (SFSG) are a natu-
ral generalization of the non-contiguous synchronous tree sequence substitution
grammars of [19] to include full grammar nonterminals (or states). They natu-
rally coincide with the binary rational relations studied by [17, 16]. To keep the
presentation simple, we assume a global ranked alphabet Σ of input and output
terminal symbols. Moreover, we immediately present it in a form inspired by
tree bimorphisms [1] and tree grammars with multi-variables [17].

Definition 1. A (stateful) synchronous forest substitution grammar (SFSG) is
a tuple G = (N,Σ, I,R,B), where

– (N,Σ, I,R) is a regular tree grammar, and
– B ⊆ (

⋃
n∈I Rn ×Rn) ∪ (

⋃
n∈N\I R

∗
n ×R∗n) is a finite set of aligned rules.

It is a multi bottom-up tree transducer (MBOT) if B ⊆
⋃
n∈N Rn ×R∗n.

n→
(γ1

n

γ1

n
, ε

)
n→

(γ2

n

γ2

n
, ε

)
n→

(
α α , ε

)
n′ →

(
α , α α

)

n0 →
(σ

n n′ n
,

σ

n′ α n′

)
n′ →

(γ1

n′
,

γ1

n′

γ1

n′

)
n′ →

(γ2

n′
,

γ2

n′

γ2

n′

)

Fig. 1. Aligned example rules of the SFSG of Example 2.

Roughly speaking, we have a regular tree grammar containing all the poten-
tially used rules. However, potentially several rules with the same left-hand side
are applied at the same time on both the input and the output side. This de-
pendence is expressed by the set B of aligned rules. For all initial nonterminals,
only one rule is applied to the input and output side as we want to compute
a tree translation. For the remaining nonterminals we can use arbitrarily many
rules on the input and the output side. The alignment in the rules is estab-
lished implicitly by occurrences of the same nonterminal in the right-hand sides.
To make aligned rules more readable, we also write n → (`1 · · · `k, r1 · · · rk′)
or n → (`, r) for a rule (n → `1 · · ·n → `k, n → r1 · · ·n → rk′) ∈ B, where
n → `1, . . . , n → `k, n → r1, . . . , n → rk′ ∈ Rn are rules for the same non-
terminal n ∈ N . In short, we write the common nonterminal only once on the
left-hand side and then group all the right-hand sides of the rules of Rn. We as-
sume that the nonterminals N of each SFSG are totally ordered by ≤N . Finally,
we let var(χ) = var(`) ∪ var(r) for every rule χ = n → (`, r), where ` and r
contain only the right-hand sides of rules of R (as per the previous declaration).

Example 2. Let (N,Σ, {n0}, R) be the regular tree grammar such that
– N = {n0, n, n

′} with n0 <N n <N n′ and Σ = {α(0), γ
(1)
1 , γ

(1)
2 , σ(3)}, and

– the following rules are in R:

ρ0 : n0 → σ(n, n′, n) ρ2 : n→ γ1(n) ρ4 : n→ γ2(n) ρ6 : n→ α

ρ1 : n0 → σ(n′, α, n′) ρ3 : n′ → γ1(n′) ρ5 : n′ → γ2(n′) ρ7 : n′ → α .

Based on this RTG we construct the SFSG G = (N,Σ, {n0}, R,B) with

B = {(ρ0, ρ1), (ρ2ρ2, ε), (ρ4ρ4, ε), (ρ6ρ6, ε), (ρ3, ρ3ρ3), (ρ5, ρ5ρ5) (ρ7, ρ7ρ7)} .

We illustrate these aligned rules in Fig. 1, where we indicate the implicit links
by splines. Clearly, the SFSG G is (syntactically) not an MBOT.

Next, we introduce the (bottom-up) semantics of an SFSG G. It works on pre-
translations, which are pairs of input and output tree sequences together with
a governing nonterminal. The pre-translations computed by G are inductively
defined, and each pre-translation is obtained from an aligned rule χ = n→ (`, r)
of G by replacing each nonterminal n ∈ var(χ) by a pre-translation computed
by G that is governed by n. Alongside, we introduce the derivation tree, which
records how the aligned rules combined.

Definition 3. Let G = (N,Σ, I,R,B) be an SFSG. A pre-translation for G
is a triple 〈t, n,u〉 consisting of a nonterminal n ∈ N and input and output
tree sequences t,u ∈ T ∗Σ. The set PT(G) of pre-translations generated by G
is the smallest set T such that (†): 〈`θ , n , rθ′〉 ∈ PT(G) for all aligned rules
χ = n→ (`, r) ∈ B, all mappings θ, θ′ : var(χ)→ T ∗Σ, and for all n′ ∈ var(χ)

– |θ(n′)| = |posn′(`)| and |θ′(n′)| = |posn′(r)|, and
– 〈θ(n′), n′, θ′(n′)〉 ∈ T is a pre-translation generated by G.

The derivation tree corresponding to the pre-translation (†) is χ(dn1 , . . . , dnk
),

where var(χ) = {n1, . . . , nk} with n1 <N · · · <N nk and dn is the derivation tree
corresponding to the pre-translation 〈θ(n), n, θ′(n)〉 for every n ∈ var(χ).

Example 4. Recall the SFSG G of Example 2. The aligned rules χ6 = (ρ6ρ6, ε)
and χ7 = (ρ7, ρ7ρ7) immediately yield the pre-translations 〈(α, α) , n , ε〉 and
〈α , n′ , (α, α)〉 with derivation trees χ6 and χ7, respectively. The former pre-
translation (and the pre-translations obtained) can be used with the aligned
rules χ2 = (ρ2ρ2, ε) and χ4 = (ρ4ρ4, ε) to obtain the pre-translations

〈(γ1(α), γ1(α)) , n , ε〉 with derivation tree χ2(χ6), or more generally,
{〈(t, t) , n , ε〉 | t ∈ T{γ1,γ2,α}} with derivation trees d ∈ T{χ2,χ4,χ6},

where the rules χ2 and χ4 have rank 1 in the derivation trees. Similarly, with
the help of the rules χ3 = (ρ3, ρ3ρ3) and χ5 = (ρ5, ρ5ρ5) we can obtain the pre-
translations {〈(t, t) , n′ , t〉 | t ∈ T{γ1,γ2,α}} with derivation trees d ∈ T{χ3,χ5,χ7}.
Plugging those pre-translations into the rule χ1 = (ρ0, ρ1), we obtain

{〈σ(t, u, t) , n0 , σ(u, α, u)〉 | t, u ∈ T{γ1,γ2,α}} ⊆ PT(G)

with derivation trees {χ1(d1, d2) | d1 ∈ T{χ2,χ4,χ6}, d2 ∈ T{χ3,χ5,χ7}}. We illus-
trate the last step of the process in Fig. 2.

Now we are ready to define the tree translation computed by an SFSG.
Intuitively all pre-translations governed by initial nonterminals are translations.

Definition 5. Let G = (N,Σ, I,R,B) be an SFSG. It computes the tree transla-
tion τG ⊆ TΣ×TΣ defined by τG =

⋃
n∈I{(t, u) | 〈t, n, u〉 ∈ PT(G)}. The deriva-

tion tree language D(G) contains all derivation trees for the pre-translations
〈t, n, u〉 ∈ PT(G) with n ∈ I. As usual, two SFSG are equivalent if their com-
puted tree translations coincide. Finally, we denote the classes of tree translations
computable by SFSG and MBOT by SFSG and MBOT, respectively.

In the rest of this section, we present a normal form for MBOT, which allows
us to relate our notion of MBOT to that of [4]. Moreover, we present some simple
properties of SFSG. Let us start with classic MBOT [4].

Definition 6. The MBOT (N,Σ, I,R,B) is classic if ` is linear in N and
var(r) ⊆ var(`) for every n→ (`, r) ∈ B.

n0 →
(σ

n n′ n
,

σ

n′ α n′

)

〈(t , t) , n , ε〉 〈 u , n′ , (u , u)〉

Fig. 2. Illustration of the combination of an aligned rule with pre-translations.

Proposition 7. For every MBOT there exists an equivalent classic MBOT.

Proof. Let G = (N,Σ, I,R,B) be the given MBOT. We construct the MBOT
G′ = (N,Σ, I,R,B′) withB′ = {n→ (`, r) ∈ B | ` linear in N, var(r) ⊆ var(`)}
that is obviously classic. It remains to prove that G and G′ are equivalent. To
this end, we observe that |t| = 1 for all 〈t, n,u〉 ∈ PT(G) due to the rule shape
of G. Now, let χ = n → (`, r) ∈ B be a rule and n′ ∈ var(r) \ var(`). To
build a pre-translation of PT(G) with χ, we need an existing pre-translation
〈ε, n′,u〉 ∈ PT(G) because n′ ∈ var(χ), but n′ /∈ var(`). Such pre-translations
do not exist, hence the rule χ is useless (i.e., there are no derivation trees that
contain χ), which proves that deleting it does not affect the semantics. In the
same manner, rules whose left-hand side is not linear in N can be deleted (be-
cause they would require a pre-translation 〈t, n,u〉 ∈ PT(G) with |t| ≥ 2). ut

Consequently, our class MBOT coincides the standard notion [4], so we can
freely use the known properties of MBOT. Already in [12, 4] the MBOT were
transformed into a special normal form before composition. In this normal form,
at most one (input or output) symbol is allowed per aligned rule. For our pur-
poses, a slightly less restricted variant, in which at most one input symbol may
occur per aligned rule is sufficient since we compose the input parts of two
MBOT. Let us recall the property and the associated normalization result [4].

Definition 8. The classic MBOT (N,Σ, I,R,B) is in one-symbol (input) nor-
mal form if |posΣ(`)| ≤ 1 for every aligned rule n→ (`, r).

Lemma 9 (see [4, Lemma 14]). For every MBOT there exists an equivalent
classic MBOT in one-symbol (input) normal form.

Proof. By Proposition 7 we can construct an equivalent classic MBOT for every
MBOT. With the help of [4, Lemma 14] we can then construct an equivalent
MBOT in one-symbol normal form. ut

Given one-symbol normal form, we can now define deterministic MBOT,
which we use instead of k-morphisms [1] to avoid another concept. It should be
noted that deterministic MBOT are slightly more expressive than k-morphisms.

Definition 10. A classic MBOT (N,Σ, I,R,B) in one-symbol normal form is
deterministic if (i) I is a singleton, (ii) ` /∈ N for every n → (`, r) ∈ B,
and (iii) for every n ∈ N and σ ∈ Σ there exists at most one aligned rule
n→ (`, r) ∈ B such that `(ε) = σ.

Theorem 11. The following simple properties can easily be observed:

1. SFSG = SFSG−1.
2. The domain dom(τ) and the range ran(τ) of a tree translation τ ∈ SFSG

are not necessarily regular.
3. MBOT (SFSG.

Proof. The first property is immediate because the syntactic definition of SFSG
is completely symmetric. For the second property we observe that the tree trans-
lation τG computed by the SFSG G of Example 2 is such that both its domain
and its range are not regular. Finally, the inclusion in the third item is obvious.
Moreover, we know that dom(τ) is regular for every τ ∈ MBOT by Proposition 7
and [4, Theorem 25], so the tree translation τG is not in MBOT. ut

4 Composition and decomposition

In this section, we develop a characterization of SFSG in terms of MBOT in
order to better understand the expressive power of SFSG. Since we already
showed MBOT (SFSG in Theorem 11, we will use compositions of MBOT to
characterize the expressive power of SFSG. To this end, we need a decomposition
(see Theorem 12) and a composition (see Theorem 15) result.

Theorem 12 (see [17, Proposition 4.5]). For every SFSG G, there exist two
deterministic MBOT G1 and G2 such that τG = τ−1

G1
; τG2 .

Proof. Let G = (N,Σ, I,R,B) be the original SFSG. Without loss of generality,
we can assume that I is a singleton. Whenever we explicitly list nonterminals
like {n1, . . . , nk}, we assume that n1 <N · · · <N nk. We construct the two
MBOT G1 = (N,Σ ∪B, I,R ∪R′, B′) and G2 = (N,Σ ∪B, I,R ∪R′, B′′) with

– R′ = {n→ χ(n1, . . . , nk) | χ = n→ (`, r) ∈ B, var(χ) = {n1, . . . , nk}},
– B′ = {n → (χ(n1, . . . , nk), `) | χ = n → (`, r) ∈ B, var(χ) = {n1, . . . , nk}},

and
– B′′ = {n→ (χ(n1, . . . , nk), r) | χ = n→ (`, r) ∈ B, var(χ) = {n1, . . . , nk}}.

Obviously, both G1 and G2 are classic MBOT in one-symbol normal form, and
moreover, they are deterministic. It only remains to prove that τG = τ−1

G1
; τG2 .

A straightforward induction can be used to prove that G1 and G2 translate
derivation trees ofD(G) to the corresponding input and output tree, respectively.
Since each derivation tree d ∈ D(G) uniquely determines the corresponding input
and the output tree, we immediately obtain the statement. A more detailed proof
can be found in [17]. ut

Corollary 13 (of Theorem 12). The derivation tree language D(G) of an
SFSG G is regular.

Proof. By the proof of Theorem 12, there exist classic MBOT that translate the
derivation trees to the corresponding input and output tree. Moreover, by [4,
Theorem 25] the domain of each MBOT is regular, which yields the result. ut

Note that in the proof of Theorem 12 the rule χ uniquely determines the
nonterminal n. Nevertheless, the constructed MBOT have (potentially) several
nonterminals as we need to check that the behavior of the original SFSG is prop-
erly matched. In fact, it follows straightforwardly from the proof of Theorem 12
that each SFSG can be characterized by a regular derivation tree language and
two deterministic MBOT mapping the derivation trees to the input and output
trees. This view essentially coincides with the bimorphism approach of [1] (es-
sentially, SFSG are equally expressive the bimorphisms of [1], in which both the
input and output morphisms are allowed to be k-morphisms). We will reuse this
characterization, so let us make it more explicit.

Theorem 14. SFSG = d-MBOT−1 ; FTA ; d-MBOT, where d-MBOT is the
class of all tree translations computed by deterministic MBOT.

Now we are ready to state our composition result. We first prove it using
several known results on decompositions and compositions together with a few
new results. However, for the reader’s benefit, we will present an fully integrated
construction and an example after the next theorem.

Theorem 15. MBOT−1 ; MBOT ⊆ SFSG.

Proof. Let G1 and G2 be the given MBOT. By Lemma 9 we can assume without
loss of generality that G1 and G2 are classic MBOT in one-symbol normal form.
By the construction of [4, Lemma 6] applied to both G1 and G2 we obtain that

τG1 = d−1
1 ; idL1 ; τG′

1
and τG1 = d−1

2 ; idL2 ; τG′
2

for some delabelings d1 and d2, regular tree languages L1, L2 ∈ Reg, and deter-
ministic MBOT G′1 and G′2. Our approach is displayed in Fig. 3. Consequently,

τ−1
G1

;τG2 = (d−1
1 ; idL1 ;τG′

1
)−1 ; (d−1

2 ; idL2 ;τG′
2
) = (τ−1

G′
1

; idL1 ;d1) ; (d−1
2 ; idL2 ;τG′

2
)

Now we show that d1 ; d−1
2 = e−1

2 ; e1 for some delabelings e1 and e2 in the
spirit of [3, Sect. II-1-4-2-1]. Let Σ′ = {σ | σ ∈ Σ, d1(σ) = �} be the ranked
alphabet containing (same-rank) copies of the elements of Σ that are erased
by d1. Similarly, let Σ′′ = {σ | σ ∈ Σ, d2(σ) = �} contain copies of those
elements that are erased by d2. Moreover, let

Σ′′′ = {〈σ, σ′〉 | σ, σ′ ∈ Σ, d1(σ) = d2(σ′) 6= �}

and ∆ = Σ′ ∪ Σ′′ ∪ Σ′′′. Then we construct delabelings e1, e2 : T∆ → TΣ as
follows:

e2(σ) = σ e2(σ) = � e2(〈σ, σ′〉) = σ

e1(σ) = � e2(σ) = σ e2(〈σ, σ′〉) = σ′

for all σ, σ′ ∈ Σ provided that the listed elements belong to Σ′, Σ′′, and Σ′′′,
respectively. We omit the formal proof of d1 ;d−1

2 = e−1
2 ;e1, but it can be achieved

by a simple induction. So far we thus obtained

τ−1
G1

; τG2 = (τ−1
G′

1
; idL1 ; d1) ; (d−1

2 ; idL2 ; τG′
2
) = (τ−1

G′
1

; idL1 ; e−1
2) ; (e1 ; idL2 ; τG′

2
)

L′1 ∩ L′2

L1 L2

e2 e1

τG′
1 d1 d2

τG′
2

Fig. 3. Illustration of the approach used in the proof of Theorem 15.

by the exchange of the delabelings. Now let L′1 = e−1
2 (L1) and L′2 = e−1

1 (L2).
Clearly, both L′1 and L′2 are regular, and also L′1 ∩ L′2 is regular [7, 8]. Thus

τ−1
G1

; τG2 = (τ−1
G′

1
; e−1

2) ; idL′
1∩L′

2
; (e1 ; τG′

2
) ,

which can be simplified to τ−1
G′′

1
; idL′

1∩L′
2

; τG′′
2

because we can compose the de-
labelings e1 and e2 with the deterministic MBOT G′1 and G′2 to obtain the
deterministic MBOT G′′1 and G′′2 , respectively, using [4, Theorem 23]. With this
final step, we obtain a form suitable for Theorem 14, so τ−1

G1
; τG2 ∈ SFSG. ut

Corollary 16 (of Theorems 12 and 15). SFSG = MBOT−1 ; MBOT.

As mentioned, we provide an explicit construction for the composition of
an inverse MBOT with an MBOT into an SFSG. Our construction follows the
general approach of translating the output of the first MBOT with the help of
the second MBOT as also demonstrated in [4].

Definition 17. Let G1 = (N1, Σ, I1, R1, B1) and G2 = (N2, Σ, I2, R2, B2) be
classic MBOT such that N1 ∩ N2 = ∅. Moreover, let G′1 = (N1, Σ, I1, R1) and
G′2 = (N2, Σ, I2, R2) be the underlying regular tree grammars, respectively. We
construct the composed SFSG (G−1

1 ;G2) = (N1×N2, Σ, I1× I2, R,B) such that

– the set R of rules is given by:
• 〈n1, n2〉 → 〈n1, n

′
2〉 ∈ R for every n1 ∈ N1 and n2, n

′
2 ∈ N2,

• 〈n1, n2〉 → 〈n′1, n2〉 ∈ R for every n1, n
′
1 ∈ N1 and n2 ∈ N2,

• 〈n1, n2〉 → r(f1) with r(f1) = r[n ← 〈n, f1(n)〉 | n ∈ var(r)] ∈ R for
every rule ρ = n1 → r ∈ R1, n2 ∈ N2, and injection f1 : var(r)→ N2,

• 〈n1, n2〉 → r(f2) with r(f2) = r[n ← 〈f2(n), n〉 | n ∈ var(r)] ∈ R for
every rule ρ = n2 → r ∈ R2, n1 ∈ N1, and injection f2 : var(r)→ N1,

• and no further rules are in R, and
– the set B of aligned rules is given by:
• 〈n1, n2〉 → (r[n′1 ← 〈n′1, n2〉] , 〈n′1, n2〉) ∈ B for every aligned rule
n1 → (n′1, r) ∈ B1 with n′1 ∈ N1 and n2 ∈ N2,

• 〈n1, n2〉 → (〈n1, n
′
2〉 , r[n′2 ← 〈n1, n

′
2〉]) ∈ B for every aligned rule

n2 → (n′2, r) ∈ B2 with n′2 ∈ N2 and n1 ∈ N1,

n0 →
(σ

n n′ n′′
,

σ

n n′ n

)
n→

(γ1/γ2

n

,
γ1/γ2

n

γ1/γ2

n

)
n→

(
α , α α

)
n′′ →

(
α , ε

)

n0 →
(σ

n′ n n

,
σ

n n′ n

)
n′ →

(γ1/γ2

n′

,
γ1/γ2

n′

)
n′ →

(
α , α

)
n′′ →

(γ1

n′′
, ε
)

n→
(γ1

n′′
, ε
)

Fig. 4. Rules of the classic MBOT G1 used in Example 18.

m0 →
(σ

m m′ m′′
,

σ

m′ α m′

)
m′ →

(γ1/γ2

m′

,
γ1/γ2

m′

γ1/γ2

m′

)
m′ →

(
α , α α

)

m→
(γ1/γ2

m
, ε
)

m→
(
α , ε

)
m′′ →

(γ2

n′′
, ε
)

m′′ →
(
α , ε

)

Fig. 5. Rules of the classic MBOT G2 used in Example 18.

• χ = 〈n1, n2〉 → (`(f1) , r(f2)) ∈ B for all aligned rules n1 → (r, `) ∈ B1

and n2 → (r′, r) ∈ B2, and injective mappings f1 : var(r) → N2 and
f2 : var(r′) → N1 such that r(f1) = r′(f2) and L(G′1)n′

1
∩ L(G′2)n′

2
6= ∅

for all omitted nonterminals 〈n′1, n′2〉 ∈ var(r(f1)) \ var(χ),1

• and no further aligned rules are in B.

Let us illustrate the construction on an example.

Example 18. Let G1 = (N,Σ, {n0}, R1, B1) be the classic MBOT with nonter-
minals N = {n0, n, n

′, n′′, n}, Σ = {α(0), γ
(1)
1 , γ

(1)
2 , σ(3)}, and the rules R1 and

aligned rules B1 that are depicted in Fig. 4. Let G2 = (M,Σ, {m0}, R2, B2) be
the classic MBOT with nonterminals M = {m0,m,m

′,m′′} and the rules R2

and aligned rules B2 depicted in Fig. 5. The SFSG G−1
1 ; G2 is essentially the

SFSG of Example 2, but we will explain the construction of two aligned rules.
The aligned rule 〈n0,m0〉 →

(
σ(〈n,m〉, 〈n′,m′〉, 〈n,m〉) , σ(〈n′,m′〉, α, 〈n′,m′〉)

)
is constructed from the first aligned rule of G1 (left, top row in Fig. 4) and the
first aligned rule of G2 (left, top row in Fig. 5). During the overlay of the left-
hand sides also the state 〈n′′,m′′〉 is created. Since the languages of n′′ and m′′

both contain the tree α, the previous aligned rule can be constructed. The pro-
cess is illustrated in Fig. 6. However, if we want to use the left rule in the second
row in Fig. 4 instead, then we can construct

〈n0,m0〉 →
(
σ(〈n,m′〉, 〈n′,m〉, 〈n,m′〉) , σ(〈n,m′〉, α, 〈n,m′〉)

)
,

but it is not in the composition because the state 〈n,m′′〉 combines the states
n and m′′, which have an empty intersection.

We conclude with some further properties of SFSG and their consequences for
MBOT using our main result of Corollary 16. In particular, it is known [9] that
the output string language of an MBOT is an LCFRS [20, 18]. Using Corollary 16,
1 As usual `(f1) = `1(f1) · · · `k(f1) provided that ` = `1 · · · `k.

n0

↓(σ

n n′ n′′
,

σ

n n′ n

)
m0

↓(σ

m m′ m′′
,

σ

m′ α m′

)

Fig. 6. Illustration of the composition construction (see Example 18). The matching
happens inside the boxes and the obtained linked states are paired in the left-hand and
right-hand side outside the box.

Table 1. Complexity results for a SFSG G and input strings (w1, w2) and trees (t1, t2),
where rk(G) is the length of the longest sequence in an aligned rule of G.

problem string level tree level

Parsing O(|G| · (|w1| · |w2|)2 rk(G)+2) O(|G| · |t1| · |t2|)

Translation O(|G| · |w1|2 rk(G)+2) O(|G| · |t1|)

we can conclude that both the input and the output string language of an SFSG
are LCFRS. Moreover, we can import several complexity results from MBOT [14]
to SFSG as indicated in Table 1.

Theorem 19 (see [16, Example 5]). SFSG is not closed under composition.

Corollary 20. MBOT ; MBOT−1 6⊆ SFSG.

Proof. Let us assume that (†): MBOT ; MBOT−1 ⊆ SFSG. Then

SFSG ; SFSG

⊆ (MBOT−1 ; MBOT) ; (MBOT−1 ; MBOT) ⊆ MBOT−1 ; SFSG ; MBOT

⊆ MBOT−1 ; (MBOT−1 ; MBOT) ; MBOT ⊆ MBOT−1 ; MBOT = SFSG

using Corollary 16, (†), Corollary 16, the closure under composition for MBOT [4,
Theorem 23], and Corollary 16 once more. However, the result contradicts The-
orem 19, thus (†) is false, proving the result. ut

References

1. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theor. Comput.
Sci. 20(1), 33–93 (1982)

2. Chiang, D.: An introduction to synchronous grammars. In: Proc. 44th ACL. Associ-
ation for Computational Linguistics (2006), part of a tutorial given with K. Knight

3. Dauchet, M.: Transductions de forêts — Bimorphismes de magmöıdes. Première
thèse, Université de Lille (1977)

4. Engelfriet, J., Lilin, E., Maletti, A.: Composition and decomposition of extended
multi bottom-up tree transducers. Acta Inf. 46(8), 561–590 (2009)

5. Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of determin-
istic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2),
57–67 (2004)

6. Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree
transducers. Theor. Comput. Sci. 347(1–2), 276–287 (2005)

7. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest, Hungary
(1984)

8. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, chap. 1, pp. 1–68. Springer (1997)

9. Gildea, D.: On the string translations produced by multi bottom-up tree transduc-
ers. Computational Linguistics 38(3), 673–693 (2012)

10. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Proc. 6th CICLing. LNCS, vol. 3406, pp. 1–24. Springer
(2005)

11. Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déter-
ministes. In: Proc. 6th CAAP. LNCS, vol. 112, pp. 280–289. Springer (1981)

12. Maletti, A.: Compositions of extended top-down tree transducers. Inform. and
Comput. 206(9–10), 1187–1196 (2008)

13. Maletti, A.: Why synchronous tree substitution grammars? In: Proc. HLT-NAACL.
pp. 876–884. Association for Computational Linguistics (2010)

14. Maletti, A.: An alternative to synchronous tree substitution grammars. J. Nat.
Lang. Engrg. 17(2), 221–242 (2011)

15. Maletti, A.: How to train your multi bottom-up tree transducer. In: Proc. 49th
ACL. pp. 825–834. Association for Computational Linguistics (2011)

16. Radmacher, F.G.: An automata theoretic approach to rational tree relations. In:
Proc. 34th SOFSEM. LNCS, vol. 4910, pp. 424–435. Springer (2008)

17. Raoult, J.C.: Rational tree relations. Bull. Belg. Math. Soc. Simon Stevin 4(1),
149–176 (1997)

18. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theor. Comput. Sci. 88(2), 191–229 (1991)

19. Sun, J., Zhang, M., Tan, C.L.: A non-contiguous tree sequence alignment-based
model for statistical machine translation. In: Proc. 47th ACL. pp. 914–922. Asso-
ciation for Computational Linguistics (2009)

20. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proc. 25th ACL. pp. 104–111.
Association for Computational Linguistics (1987)

21. Zhang, M., Jiang, H., Aw, A., Li, H., Tan, C.L., Li, S.: A tree sequence alignment-
based tree-to-tree translation model. In: Proc. 46th ACL. pp. 559–567. Association
for Computational Linguistics (2008)

22. Zhang, M., Jiang, H., Li, H., Aw, A., Li, S.: Grammar comparison study for trans-
lational equivalence modeling and statistical machine translation. In: Proc. 22nd
CoLing. pp. 1097–1104. Association for Computational Linguistics (2008)

