
c© A. Maletti and D. Quernheim
This work is licensed under the
Creative Commons Attribution License.

Hyper-Minimization for
Deterministic Weighted Tree Automata

Andreas Maletti∗

Universität Leipzig, Institute of Computer Science
Augustusplatz 10–11, 04109 Leipzig, Germany
maletti@informatik.uni-leipzig.de

Daniel Quernheim∗

Universität Stuttgart, Institute for Natural Language Processing
Pfaffenwaldring 5b, 70569 Stuttgart, Germany

daniel@ims.uni-stuttgart.de

Hyper-minimization is a state reduction technique that allows a finite change in the semantics. The
theory for hyper-minimization of deterministic weighted tree automata is provided. The presence of
weights slightly complicates the situation in comparison to the unweighted case. In addition, the first
hyper-minimization algorithm for deterministic weighted tree automata, weighted over commutative
semifields, is provided together with some implementation remarks that enable an efficient imple-
mentation. In fact, the same run-time O(m logn) as in the unweighted case is obtained, where m is
the size of the deterministic weighted tree automaton and n is its number of states.

1 Introduction

Deterministic finite-state tree automata (DTA) [13, 14] are one of the oldest, simplest, but most useful
devices in computer science representing structure. They have wide-spread applications in linguistic
analysis and parsing [27] because they naturally can represent derivation trees of a context-free grammar.
Due to the size of the natural language lexicons and processes like state-splitting, we often obtain huge
DTA consisting of several million states. Fortunately, each DTA allows us to efficiently compute a unique
(up to isomorphism) equivalent minimal DTA, which is an operation that most tree automata toolkits
naturally implement. The asymptotically most efficient minimization algorithms are based on [22, 18],
which in turn are based on the corresponding procedures for deterministic string automata [20, 16, 30].
In general, all those procedures compute the equivalent states and merge them in time O(m logn), where
n is the number of states of the input DTA and m is its size.

Hyper-minimization [3] is a state reduction technique that can reduce beyond the classical minimal
device because it allows a finite change in the semantics (or a finite number of errors). It was already suc-
cessfully applied to a variety of devices such as deterministic finite-state automata [12, 19], deterministic
tree automata [21] as well as deterministic weighted automata [24]. With recent progress in the area of
minimization for weighted deterministic tree automata [25], which provides the basis for this contribu-
tion, we revisit hyper-minimization for weighted deterministic tree automata. The asymptotically fastest
hyper-minimization algorithms [12, 19] for DFA compute the “almost-equivalence” relation and merge
states with finite left language, called preamble states, according to it in time O(m logn), where m is
the size of the input device and n is the number of its states. Naturally, this complexity is the goal for
our investigation as well. Variations such as cover automata minimization [8], which has been explored
before hyper-minimization due to its usefulness in compressing finite languages, or k-minimization [12]
restrict the length of the error strings instead of their number, but can also be achieved within the stated
time-bound.

As in [24] our weight structures will be commutative semifields, which are commutative semi-
rings [17, 15] with multiplicative inverses. As before, we will restrict our attention to deterministic
∗Both authors were financially supported by the German Research Foundation (DFG) grant MA / 4959 / 1–1.

1

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Hyper-minimization for deterministic weighted tree automata

automata. Actually, the mentioned applications of DTA often use the weighted version to compute a
quantitative answer (i.e., the numerically best-scoring parse, etc). We already know that weighted de-
terministic tree automata (DWTA) [4, 11] over semifields can be efficiently minimized [25], although the
minimal equivalent DWTA is no longer unique due to the ability to “push” weights [26, 10, 25]. The
asymptotically fastest minimization algorithm [25] nevertheless still runs in time O(m logn). To the au-
thors’ knowledge, [25] is currently the only published algorithm achieving this complexity for DWTA.
Essentially, it normalizes the input DWTA by “pushing” weights, which yields that, in the process, the
signatures of equivalent states become equivalent, so that a classical unweighted minimization can then
perform the computation of the equivalence and the merges. To this end, it is important that the signature
ignores states that can only recognize finitely many contexts, which are called co-preamble states, to
avoid computing a wrong “pushing” weight.

We focus on an almost-equivalence notion that allows the recognized weighted tree languages to
differ (in weight) for finitely many trees. Thus, we join the results on unweighted hyper-minimization
for DTA [21] and weighted hyper-minimization for WDFA [24]. Our algorithms (see Algorithms 1 and
2) contain features of both of their predecessors and are asymptotically as efficient as them because
they also run in time O(m logn). As in [28], albeit in a slightly different format, we use standardized
signatures to avoid the explicit pushing of weights that was successful in [25]. This adjustment allows us
to mold our weighted hyper-minimization algorithm into the structure of the unweighted algorithm [19].

2 Preliminaries

We use N to denote the set of all nonnegative integers (including 0). For every integer n ∈ N, we use
the set [n] = {i ∈ N | 1 ≤ i ≤ n}. Given two sets S and T , their symmetric difference S	T is given by
S	T = (S−T)∪ (T −S). An alphabet Σ is simply a finite set of symbols, and a ranked alphabet (Σ, rk)
consists of an alphabet Σ and a ranking rk : Σ→N. We let Σn = {σ ∈ Σ | rk(σ) = n} be the set of symbols
of rank n for every n ∈ N. We often represent the ranked alphabet (Σ, rk) by Σ alone and assume that the
ranking ‘rk’ is implicit. Given a set T and a ranked alphabet Σ, we let

Σ(T) = {σ(t1, . . . , tn) | n ∈ N,σ ∈ Σn, t1, . . . , tn ∈ T} .

The set TΣ(Q) of Σ-trees indexed by a set Q is the smallest set T such that Q∪Σ(T) ⊆ T . We write TΣ

for TΣ(/0). Given a tree t ∈ TΣ(Q), its positions pos(t) ⊆ N∗ are inductively defined by pos(q) = {ε}
for each q ∈ Q and pos(σ(t1, . . . , tn)) = {ε} ∪ {iw | i ∈ [n],w ∈ pos(ti)} for all n ∈ N, σ ∈ Σn, and
t1, . . . , tn ∈ TΣ(Q). For each position w ∈ pos(t), we write t(w) for the label of t at position w and
t|w for the subtree of t rooted at w. Formally,

q(ε) = q
(
σ(t1, . . . , tn)

)
(w) =

{
σ if w = ε

ti(v) if w = iv with i ∈ [n], v ∈ N∗

q|ε = q σ(t1, . . . , tn)|w =

{
σ(t1, . . . , tn) if w = ε

ti|v if w = iv with i ∈ [n], v ∈ N∗

for all q ∈ Q, n ∈ N, σ ∈ Σn, and t1, . . . , tn ∈ TΣ(Q). The height ht(t) of a tree t ∈ TΣ(Q) is simply
ht(t) = max {|w| | w ∈ pos(t)}.

We reserve the use of the special symbol � of rank 0. A tree t ∈ TΣ∪{�}(Q) is a Σ-context indexed by Q
if the symbol � occurs exactly once in t. The set of all Σ-contexts indexed by Q is denoted by CΣ(Q). As

A. Maletti and D. Quernheim 3

before, we write CΣ for CΣ(/0). For each c∈CΣ(Q) and t ∈ TΣ(Q), the substitution c[t] denotes the tree ob-
tained from c by replacing � by t. Similarly, we use the substitution c[c′] with another context c′ ∈CΣ(Q),
in which case we obtain yet another context.

We take all weights from a commutative semifield 〈S,+, ·,0,1〉,1 which is an algebraic structure
consisting of a commutative monoid 〈S,+,0〉 and a commutative group 〈S−{0}, ·,1〉 such that
• s ·0 = 0 for all s ∈ S, and
• s · (s1 + s2) = (s · s1)+(s · s2) for all s,s1,s2 ∈ S.

Roughly speaking, commutative semifields are commutative semirings [17, 15] with multiplicative in-
verses. Many practically relevant weight structures are commutative semifields. Examples include
• the real numbers 〈R,+, ·,0,1〉,
• the tropical semifield 〈R∪{∞},min,+,∞,0〉,
• the probabilistic semifield 〈[0,1],max, ·,0,1〉 with [0,1] = {r ∈R | 0≤ r ≤ 1}, and
• the BOOLEAN semifield B= 〈{0,1},max,min,0,1〉.

For the rest of the paper, let 〈S,+, ·,0,1〉 be a commutative semifield (with 0 6= 1), and let S= S−{0}.
For every s∈ Swe write s−1 for the inverse of s; i.e., s ·s−1 = 1. For better readability, we will sometimes
write s1

s2
instead of s1 ·s−1

2 . The following notions implicitly use the commutative semifield S. A weighted
tree language is simply a mapping ϕ : TΣ(Q)→ S. Its support supp(ϕ) ⊆ TΣ(Q) is supp(ϕ) = ϕ−1(S);
i.e., the support contains exactly those trees that are evaluated to non-zero by ϕ . Given s ∈ S, we let
(s ·ϕ) : TΣ(Q)→ S be the weighted tree language such that (s ·ϕ)(t) = s ·ϕ(t) for every t ∈ TΣ(Q).

A deterministic weighted tree automaton (DWTA) [4, 23, 6, 11] is a tuple A = (Q,Σ,δ ,wt,F) with
• a finite set Q of states,
• a ranked alphabet Σ of input symbols such that Σ∩Q = /0,
• a transition mapping δ : Σ(Q)→ Q,2

• a transition weight assignment wt : Σ(Q)→ S, and
• a set F ⊆ Q of final states.

The transition and transition weight mappings ‘δ ’ and ‘wt’ naturally extend to mappings δ̂ : TΣ(Q)→ Q
and ŵt : TΣ(Q)→ S by

δ̂ (q) = q δ̂ (σ(t1, . . . , tn)) = δ (σ(δ̂ (t1), . . . , δ̂ (tn)))

ŵt(q) = 1 ŵt(σ(t1, . . . , tn)) = wt(σ(δ̂ (t1), . . . , δ̂ (tn))) ·∏
i∈[n]

ŵt(ti)

for every q ∈ Q, n ∈ N, σ ∈ Σn, and t1, . . . , tn ∈ TΣ(Q). Since δ̂ (t) = δ (t) and ŵt(t) = wt(t) for all
t ∈ Σ(Q), we can safely omit the hat and simply write δ and wt for δ̂ and ŵt, respectively. The DWTA A
recognizes the weighted tree language JA K : TΣ→ S such that

JA K(t) =

{
wt(t) if δ (t) ∈ F
0 otherwise

for all t ∈ TΣ. Two DWTA A and B are equivalent if JA K = JBK; i.e., their recognized weighted tree
languages coincide. A DWTA over the BOOLEAN semifield B is also called DTA [13, 14] and written
(Q,Σ,δ ,F) since the component ‘wt’ is uniquely determined. Moreover, we identify each BOOLEAN

1We generally require 0 6= 1, and in fact, the additive monoid is rather irrelevant for our purposes.
2Note that our DWTA are always total. We additionally disallow transition weight 0. If a transition is undesired, then its

transition target can be set to a sink state, which we commonly denote by ⊥. Finally, the restriction to final states instead of
final weights does not cause a difference in expressive power in our setting [6, Lemma 6.1.4].

4 Hyper-minimization for deterministic weighted tree automata

weighted tree language ϕ : TΣ(Q)→ {0,1} with its support. Finally, the set Cδ of shallow transition
contexts is

Cδ = {σ(q1, . . . ,qi−1,�,qi+1, . . . ,qn) | n ∈ N, i ∈ [n],σ ∈ Σn,q1, . . . ,qn ∈ Q} ,

which we assume to be totally ordered by some arbitrary order ≤.
For minimization, the weighted (extended) context language of a state is relevant. For every q ∈ Q

the context-semantics JqKA : CΣ(Q)→ S of q is defined for every c ∈CΣ(Q) by

JqKA (c) =

{
wt(c[q]) if δ (c[q]) ∈ F
0 otherwise.

Intuitively, JqKA is the weighted (extended) language recognized by A starting in state q. Two states
q,q′ ∈ Q are equivalent [5], written q ≡ q′, if there exists s ∈ S such that JqKA (c) = s · Jq′KA (c) for all
c ∈CΣ. An equivalence relation ∼=⊆ Q×Q is a congruence relation (for the DWTA A) if for all n ∈ N,
σ ∈ Σn, and q1 ∼= q′1, . . . ,qn ∼= q′n we have δ (σ(q1, . . . ,qn)) ∼= δ (σ(q′1, . . . ,q

′
n)). It is known [5] that ≡

is a congruence relation. The DWTA A is minimal if there is no equivalent DWTA with strictly fewer
states. We can compute a minimal DWTA efficiently using a variant of HOPCROFT’s algorithm [20, 18]
that computes ≡ and runs in time O(m logn), where m = |Σ(Q)| is the size of A and n = |Q|.

3 A characterization of hyper-minimality

Hyper-minimization [3] is a form of lossy compression that allows any finite number of errors. It has
been investigated in [1, 19, 12] for deterministic finite-state automata and in [21] for deterministic
tree automata. Finally, hyper-minimization was already generalized to weighted deterministic finite-
state automata in [24], from which we borrow much of the general approach. In the following, let
A = (Q,Σ,δ ,wt,F) and B = (P,Σ,µ,wt′,G) be DWTA over the commutative semifield 〈S,+, ·,0,1〉
with 0 6= 1.

We start with the basic definition of when two weighted tree languages are almost-equivalent. We
decided to use the same approach as in [24], so we require that the weighted tree languages, seen as
functions, must coincide on almost all trees. Note that this restriction is not simply the same as requiring
that the weighted tree languages have almost-equal (i.e., finite-difference) supports. It fact, our defi-
nition yields that the supports are almost-equal, but that is not sufficient. In addition, we immediately
allow a scaling factor in many of our basic definitions since those are already required in classical min-
imization [5] to obtain the most general statements. Naturally, a scaling factor is not allowed for the
almost-equivalence of DWTA since these are indeed supposed assign a different weight to only finitely
many trees.
Definition 1. Two weighted tree languages ϕ1,ϕ2 : TΣ(Q)→ S are almost-equivalent, written ϕ1 ≈ ϕ2,
if there exists s ∈ S such that ϕ1(t) = s ·ϕ2(t) for almost all t ∈ TΣ(Q).3 We write ϕ1 ≈ ϕ2 (s) to indicate
the factor s. The DWTA A and B are almost-equivalent if JA K≈ JBK (1). Finally, the states q∈Q and
p ∈ P are almost-equivalent if there exists s ∈ S such that JqKA (c) = s · JpKB(c) for almost all c ∈CΣ.

We start with some basic properties of ≈, which is shown to be an equivalence relation both on the
weighted tree languages as well as on the states of a single DWTA. In addition, we demonstrate that the
latter version is even a congruence relation. This shows that once we are in almost-equivalent states, the
same impetus causes the different devices to switch to other almost-equivalent states.

3“Almost all” means all but a finite number, as usual.

A. Maletti and D. Quernheim 5

Lemma 2. Almost-equivalence is an equivalence relation such that δ (c[q]) ≈ µ(c[p]) for all c ∈ CΣ,
q ∈ Q, and p ∈ P with q≈ p.

Proof. Trivially, ≈ is reflexive and symmetric (because we have multiplicative inverses for all elements
of S). Let ϕ1,ϕ2,ϕ3 : TΣ(Q)→ S be weighted tree languages such that ϕ1 ≈ ϕ2 (s) and ϕ2 ≈ ϕ3 (s′) for
some s,s′ ∈ S. Then there exist finite sets L,L′ ⊆ TΣ(Q) such that ϕ1(t) = s ·ϕ2(t) and ϕ2(t ′) = s′ ·ϕ3(t ′)
for all t ∈ TΣ(Q)−L and t ′ ∈ TΣ(Q)−L′. Consequently, ϕ1(t ′′) = s ·s′ ·ϕ3(t ′′) for all t ′′ ∈ TΣ(Q)−(L∪L′),
which proves ϕ1 ≈ ϕ3 (s · s′) and thus transitivity. Hence, ≈ is an equivalence relation. The same
arguments can be used for≈ on DWTA4 and states. For the second property, induction allows us to easily
prove [6] that

JqKA (c′[c]) = wt(c[q]) · Jδ (c[q])KA (c′) and JpKB(c2[c1]) = wt′(c1[p]) · Jµ(c1[p])KB(c2) (†)

for all c,c′ ∈ CΣ(Q) and c1,c2 ∈ CΣ(P). Since q ≈ p (s), there exists a finite set C ⊆ CΣ such that
JqKA (c′′) = s · JpKB(c′′) for all c′′ ∈CΣ−C. Consequently,

Jδ (c[q])KA (c′) =
JqKA (c′[c])

wt(c[q])
= s · JpKB(c′[c])

wt(c[q])
= s · wt′(c[p])

wt(c[q])
· Jµ(c[p])KB(c′)

for all c′ ∈CΣ such that c′[c] /∈C, which proves that δ (c[q])≈ µ(c[p]).

Next, we show that almost-equivalent states of the same DWTA even coincide (up to the factor s) on
almost all extended contexts, which are contexts in which states may occur.

Lemma 3. Let A be minimal and q≈ q′ (s) for some s ∈ S and q,q′ ∈ Q. Then

JqKA (c) = s · Jq′KA (c) (‡)

for almost all c ∈CΣ(Q).

Proof. By definition of q≈ q′ (s), there exists a finite set C⊆CΣ such that JqKA (c) = s ·Jq′KA (c) for all
c∈CΣ−C. Let h≥max {ht(c) | c∈C} be an upper bound for the height of those finitely many contexts.
Clearly, there are only finitely many contexts of CΣ that have height at most h. Now, let c ∈ CΣ(Q) be
an extended context such that ht(c) > h, and let W = {w ∈ pos(c) | c(w) ∈ Q} be the positions that are
labeled with states. For each state q∈Q, select tq ∈ δ−1(q)∩TΣ a tree (without occurrences of states) that
is processed in q. Clearly, such a tree exists for each state because A is minimal. Let c′ be the context
obtained from c by replacing each state occurrence of q by tq. Obviously, ht(c′)≥ ht(c)> h because we
replace only leaves. Consequently, c′ ∈CΣ−C. Using a variant [6] of (†) we obtain

JqKA (c) · ∏
w∈W

wt(tc(w)) = JqKA (c′) = s · Jq′KA (c′) = s · Jq′KA (c) · ∏
w∈W

wt(tc(w)) ,

where the second equality is due to the fact that c′ ∈ CΣ −C. Comparing the left-hand and right-
hand side and cancelling the additional terms, which is allowed in a commutative semifield, we obtain
JqKA (c) = s ·Jq′KA (c) for all c∈CΣ(Q) with ht(c)> h, and thus for almost all c∈CΣ(Q) as required.

4Note that 1−1 = 1 and 1 · 1 = 1, so the restriction to factor 1 in the definition of the almost-equivalence of DWTA is not
problematic.

6 Hyper-minimization for deterministic weighted tree automata

As in all the other scenarios, the goal of hyper-minimization given device A is to construct an almost-
equivalent device B such that no device is smaller than B and almost-equivalent to A . In our setting, the
devices are DWTA over the ranked alphabet Σ and the commutative semifield S. Since almost-equivalence
is an equivalence relation by Lemma 2, we can replace the requirement “almost-equivalent to A ” by
“almost-equivalent to B” and call a DWTA B hyper-minimal if no (strictly) smaller DWTA is almost-
equivalent to it. Then hyper-minimization equates to the computation of a hyper-minimal DWTA B that
is almost-equivalent to A . Let us first investigate hyper-minimality, which was characterized in [3] for
the BOOLEAN semifield using the additional notion of a preamble state.

Definition 4 (see [3, Definition 2.11]). A state q∈Q is a preamble state if δ−1(q)∩TΣ is finite. Otherwise,
it is a kernel state.

In other words, a state is a preamble state if and only if it accepts finitely many trees (without occur-
rences of states). This notion is essentially unweighted, so the discussion in [21] applies. In particular,
we can compute the set of kernel states in time O(m) with m = |Σ(Q)| being the size of the DWTA A .

Recall that a DWTA (without unreachable states; i.e., δ−1(q)∩TΣ 6= /0 for every q ∈ Q) is minimal
if and only if it does not have a pair of different, but equivalent states [7, 5]. The “only-if” part of this
statement is shown by merging two equivalent states to obtain a smaller, but equivalent DWTA. Let us
define a merge that additionally applies a weight s to the rerouted transitions.

Definition 5. Let q,q′ ∈ Q and s ∈ S with q 6= q′. The s-weighted merge of q into q′ is the
DWTA mergeA (q s→ q′) = (Q−{q},Σ,δ ′,wt′,F−{q}) such that for all t ∈ Σ(Q−{q})

δ
′(t) =

{
q′ if δ (t) = q
δ (t) otherwise

wt′(t) =

{
s ·wt(t) if δ (t) = q
wt(t) otherwise.

In our approach to weighted hyper-minimization, we also merge, but we need to take care of the
factors, so we use the weighted merges just introduced. The next lemma hints at the correct use of
weighted merges.

Lemma 6. Let q,q′ ∈ Q be different states, of which q is a preamble state, and s ∈ S be such that q≈ q′

(s). Then mergeA (q s→ q′) is almost-equivalent to A .

Proof. Since q≈ q′ (s), there exists a finite set C⊆CΣ such that JqKA (c) = s ·Jq′KA (c) for all c∈CΣ−C.
Let h ≥ max {ht(c) | c ∈ C} be an upper bound on the height of the contexts of C. Moreover, let
h′ ≥ max {ht(t) | t ∈ δ−1(q)∩TΣ} be an upper bound for the height of the trees of δ−1(q)∩TΣ, which
is a finite set since q is a preamble state. Finally, let z > h+ h′. Now we return to the main claim.
Let B = mergeA (q s→ q′) and consider an arbitrary tree t ∈ TΣ whose height is at least z. Clearly,
showing that B(t) = A (t) for all trees t with ht(t) ≥ z proves that B and A are almost-equivalent.5

Let W = {w ∈ pos(t) | δ (t|w) = q} be the set of positions of the subtrees that are recognized in state q.
Now wt′(t|w) = s ·wt(t|w) for all w ∈W because clearly the subtrees t|w only use states different from q
except at the root, where A switches to q and B switches to q′ with the additional weight s. Note that
q cannot occur anywhere else inside those subtrees because this would create a loop which is impossible
for a preamble state. Let W = {w1, . . . ,wm} with w1 @ · · · @ wm, in which v is the lexicographic order
on N∗. Let c1 ∈CΣ be the context obtained by removing the subtree at w1 from t. Note that c1 is taller

5There are only finitely many ranked trees up to a certain height and recall that almost-equivalence does not permit a scaling
factor for DWTA.

A. Maletti and D. Quernheim 7

than h (i.e., ht(c1) > h) and thus c1 ∈CΣ−C because the height of t is larger than h+h′ and the height
of t|w1 is at most h′. Consequently, using a variant [6] of (†) we obtain

A (t) = A (c1[t|w1])
†
= wt(t|w1) · JqKA (c1) =

wt′(t|w1)

s
· s · Jq′KA (c1) = wt′(t|w1) · Jq′KA (c1)

= wt′(t|w1) ·

{
wt(c1[q′]) if δ (c1[q′]) ∈ F
0 otherwise.

Let c2 be the context obtained from c1[q′] by replacing the subtree at w2 by �. Also c2 /∈C.

= wt′(t|w1) ·

{
wt(c2[t|w2]) if δ (c2[t|w2]) ∈ F
0 otherwise.

= wt′(t|w1) ·wt(t|w2) · JqKA (c2)

‡
= wt′(t|w1) ·

wt′(t|w2)

s
· s · Jq′KA (c2) = wt′(t|w1) ·wt′(t|w2) · Jq′KA (c2) ,

which can now be iterated to obtain

= wt′(t|w1) · . . . ·wt′(t|wm) · Jq′KA (cm) = wt′(t|w1) · . . . ·wt′(t|wm) · Jq′KB(cm)
†
= B(t) ,

where the second-to-last step is justified because the state q is not used when processing the context cm.
This proves the statement.

Theorem 7. A minimal DWTA is hyper-minimal if and only if it has no pair of different, but almost-
equivalent states, of which at least one is a preamble state.

Proof. Let A be the minimal DWTA. For the “only if” part, we know by Lemma 6 that the smaller DWTA

mergeA (q s→ q′) is almost-equivalent to A if q≈ q′ (s) and q is a preamble state. For the “if” direction,
suppose that B is almost-equivalent to A and |P|< |Q|.6 For all t ∈ TΣ we have δ (t)≈ µ(t) by Lemma 2.
Since |P|< |Q|, there exist t1, t2 ∈ TΣ with q1 = δ (t1) 6= δ (t2) = q2 but µ(t1) = p = µ(t2). Consequently,
q1 = δ (t1)≈ µ(t1) = p = µ(t2)≈ δ (t2) = q2, which yields q1 ≈ q2. By assumption, q1 and q2 are kernel
states. Using a variation of the above argument (see [3, Theorem 3.3]) we can obtain t1 and t2 with the
above properties such that ht(t1),ht(t2) ≥ |Q|2. Due to their heights, we can pump the trees t1 and t2,
which yields that the states 〈q1, p〉 and 〈q2, p〉 are kernel states of the HADAMARD product A ·B. Since
A and B are almost-equivalent, we have

wt(t1) · Jq1KA (c) †
= JA K(c[t1]) = JBK(c[t1])

†
= wt′(t1) · JpKB(c)

wt(t2) · Jq2KA (c) †
= JA K(c[t2]) = JBK(c[t2])

†
= wt′(t2) · JpKB(c)

for almost all c ∈ CΣ using again the tree variant of (†). Moreover, since both 〈q1, p〉 and 〈q2, p〉 are
kernel states, we can select t1 and t2 such that the previous statements are actually true for all c ∈ CΣ.
Consequently,

wt(t1) · Jq1KA (c)
wt′(t1)

=
wt(t2) · Jq2KA (c)

wt′(t2)
and Jq1KA (c) = s · Jq2KA (c)

for all c∈CΣ and s = wt′(t1)·wt(t2)
wt′(t2)·wt(t1)

, which yields q1 ≡ q2. This contradicts minimality since q1 6= q2, which
shows that such a DWTA B cannot exist.

6Recall that almost-equivalent DWTA do not permit a scaling factor; their semantics need to coincide for almost all trees.

8 Hyper-minimization for deterministic weighted tree automata

Algorithm 1 Structure of the hyper-minimization algorithm.
Require: a DWTA A with n states
Return: an almost-equivalent hyper-minimal DWTA

A ←MINIMIZE(A) // O(m logn)
2: K← COMPUTEKERNEL(A) // O(m)

K← COMPUTECOKERNEL(A) // O(m)

4: (∼, t)← COMPUTEALMOSTEQUIVALENCE(A ,K) // Algorithm 2 — O(m logn)
return MERGESTATES(A ,K,∼, t) // Algorithm 3 — O(m)

4 Hyper-minimization

Next, we consider some algorithmic aspects of hyper-minimization for DWTA. Since the unweighted
case is already well-described in the literature [21], we focus on the weighted case, for which we need
the additional notion of co-preamble states [24], which in analogy to [24] are those states with finite
support of their weighted context language. Let P and K be the sets of preamble and kernel states of A ,
respectively.

Definition 8. A state q ∈ Q is a co-preamble state if supp(JqKA) is finite. Otherwise it is a co-kernel
state. The sets of all co-preamble states and all co-kernel states are P and K = Q−P, respectively.

Transitions entering a co-preamble state can be ignored while checking almost-equivalence because
(up to a finite number of weight differences) the reached states behave like the sink state ⊥. Trivially, all
co-preamble states are almost-equivalent. In addition, a co-preamble state cannot be almost-equivalent
to a co-kernel state. The interesting part of the almost-equivalence is thus completely determined by the
weighted languages of the co-kernel states. This special role of the co-preamble states has already been
pointed out in [12] in the context of DFA.

All hyper-minimization algorithms [3, 2, 12, 19] share the same overall structure (Algorithm 1).
In the final step we perform state merges (see Definition 5). Merging only preamble states into almost-
equivalent states makes sure that the resulting DWTA is almost-equivalent to the input DWTA by Lemma 6.
Algorithm 1 first minimizes the input DWTA using, for example, the algorithm of [25]. With the help of
a weight redistribution along the transitions (pushing), it reduces the problem to DTA minimization, for
which we can use a variant of HOPCROFT’s algorithm [18]. In the next step, we compute the set K of
kernel states of A [21] using any algorithm that computes strongly connected components (for example,
TARJAN’s algorithm [29]). By [21] a state is a kernel state if and only if it is reachable from (i) a
nontrivial strongly connected component or (ii) a state with a self-loop. Essentially, the same approach
can be used to compute the co-kernel states. In line 4 we compute the almost-equivalence on the states Q,
which is the part where the algorithms [3, 2, 12, 19] differ. Finally, we merge almost-equivalent states
according to Lemma 6 until the obtained DWTA is hyper-minimal (see Theorem 7).

Lemma 9. Let A be a minimal DWTA. The states q,q′ ∈ Q are almost-equivalent if and only if there is
n ∈ N such that δ (c[q]) = δ (c[q′]) for all c ∈CΣ such that � occurs at position w in c with |w| ≥ n.

Our algorithm for computing the almost-equivalence is an extension of the algorithm of [24]. As
in [24], we need to handle the scaling factors, for which we introduced the standardized signature
in [24]. Roughly speaking, we ignore transitions into co-preamble states and normalize the transition
weights. Recall that Cδ is the set of transition contexts; i.e., transitions with exactly one occurrence of
the symbol �. Moreover, for every q ∈ Q, we let cq be the smallest transition context cq ∈Cδ such that

A. Maletti and D. Quernheim 9

δ (cq[q]) ∈ K, where the total order on Cδ is arbitrary as assumed earlier, but it needs to be consistently
used.

Definition 10. Given q ∈ Q, its standardized signature is

Sig(q) =
{
〈c,δ (c[q]), wt(c[q])

wt(cq[q])
〉
∣∣∣ c ∈Cδ , δ (c[q]) ∈ K

}
.

Next, we show that states with equal standardized signature are indeed almost-equivalent.

Lemma 11. For all q,q′ ∈ Q, if Sig(q) = Sig(q′), then q≈ q′.

Proof. If q or q′ is a co-preamble state, then both q and q′ are co-preamble states and thus q≈ q′. Now,
let q,q′ ∈ K, and let cq ∈Cδ be the smallest transition context such that cq[q] ∈ K. Since q′ has the same
signature, cq = cq′ . In addition, let s = wt(cq[q])

wt(cq[q′])
. For every c ∈Cδ and c′ ∈CΣ,

JqKA (c′[c]) †
= wt(c[q]) · Jδ (c[q])KA (c′) and Jq′KA (c′[c]) †

= wt(c[q′]) · Jδ (c[q′])KA (c′) .

First, let 〈c,qc,sc〉 /∈ Sig(q) = Sig(q′) for all qc ∈ Q and sc ∈ S. Then c takes both q and q′ into a
co-preamble state and thus JqKA (c′[c]) = 0 = s · Jq′KA (c′[c]) for almost all c′ ∈CΣ. Second, suppose that
〈c,qc,sc〉 ∈ Sig(q) = Sig(q′) for some qc ∈ Q and sc ∈ S. Since δ (c[q]) = qc = δ (c[q′]), and we obtain

JqKA (c′[c]) =
wt(c[q])
wt(cq[q])

·wt(cq[q]) · JqcKA (c′) = sc ·wt(cq[q]) · JqcKA (c′)

=
wt(c[q′])
wt(cq[q′])

·wt(cq[q]) · JqcKA (c′) = s · Jq′KA (c′[c])

for every c′ ∈ CΣ, which shows that q ≈ q′ (s) because the scaling factor s does not depend on the
transition context c.

In fact, the previous proof can also be used to show that at most the empty context � yields a differ-
ence in the weighted context languages JqKA and Jq′KA (up to the common factor). For the completeness,
we also need a (restricted) converse for minimal DWTA, which shows that as long as there are almost-
equivalent states, we can also identify them using the standardized signature.

Lemma 12. Let A be minimal, and let q ≈ q′ be such that Sig(q) 6= Sig(q′). Then there exist r,r′ ∈ Q
such that r 6= r′ and Sig(r) = Sig(r′).

Proof. Since q ≈ q′, there exists an integer h such that δ (c[q]) = δ (c[q′]) for all c ∈ CΣ such that
w ∈ pos(c) with c(w) = � and |w| ≥ h by Lemma 9. Let c′ ∈ CΣ be a maximal context such that
r = δ (c′[q]) 6= δ (c′[q′]) = r′. Since c′ is maximal, we have δ (c′′[c′[q]]) = qc′′ = δ (c′′[c′[q′]]) for all
c′′ ∈ Cδ . If qc′′ is a co-preamble state, then 〈c,qc,sc〉 /∈ Sig(r) = Sig(r′) for all qc ∈ Q and sc ∈ S. On
the other hand, let qc′′ be a co-kernel state, and let cr ∈ Cδ be the smallest transition context such that
δ (cr[r]) ∈ K. Since q ≈ q′ and ≈ is a congruence relation by Lemma 2, we have r ≈ r′ (s) for some
s ∈ S, which means that JrKA (c) = s · Jr′KA (c) for almost all c ∈CΣ. Consequently,

wt(c′′[r]) · Jqc′′KA (c) = s ·wt(c′′[r′]) · Jqc′′KA (c)

wt(cr[r]) · Jδ (cr[r])KA (c) = s ·wt(cr[r′]) · Jδ (cr[r])KA (c)

10 Hyper-minimization for deterministic weighted tree automata

Algorithm 2 Algorithm computing the almost-equivalence ≈ and scaling map f .
Require: minimal DWTA A and its co-kernel states K
Return: almost-equivalence ≈ as a partition and scaling map f : Q→K

for all q ∈ Q do
2: π(q)←{q}; f (q)← 1 // trivial initial blocks

h← /0; I← Q // hash map of type h : Sig→ Q

4: for all q ∈ I do
succ← Sig(q) // compute standardized signature using current δ and K

6: if HASVALUE(h,succ) then
q′← GET(h,succ) // retrieve state in bucket ‘succ’ of h

8: if |π(q′)| ≥ |π(q)| then
SWAP(q,q′) // exchange roles of q and q′

10: I← I∪{r ∈ Q−{q′} | ∃c ∈Cδ : δ (c[r]) = q′} // add predecessors of q′

f (q′)← wt(cq[q′])
wt(cq[q])

// cq is as in Definition 10

12: A ←mergeA (q′
f (q′)→ q) // merge q′ into q

π(q)← π(q)∪π(q′) // q and q′ are almost-equivalent

14: for all r ∈ π(q′) do
f (r)← f (r) · f (q′) // recompute scaling factors

16: h← PUT(h,succ,q) // store q in h under key ‘succ’

return (π, f)

for almost all c ∈CΣ. Since both qc′′ and δ (cr[r]) are co-kernel states, we immediately can conclude that
wt(c′′[r]) = s ·wt(c′′[r′]) and wt(cr[r]) = s ·wt(cr[r′]), which yields

wt(c′′[r])
wt(cr[r])

=
s ·wt(c′′[r′])
s ·wt(cr[r′])

=
wt(c′′[r′])
wt(cr[r′])

.

This proves Sig(r) = Sig(r′) as required.

Lemmata 11 and 12 suggest Algorithm 2 for computing the almost-equivalence and a map represent-
ing the scaling factors. This map contains a scaling factor for each state with respect to a representative
state of its block. Algorithm 2 is a straightforward modification of an algorithm by [19] using our stan-
dardized signatures. We first compute the standardized signature for each state and store it into a (perfect)
hash map [9] to avoid pairwise comparisons. If we find a collision (i.e., a pair of states with the same
signature), then we merge them such that the state representing the bigger block survives (see Lines
9 and 12). Each state is considered at most logn times because the size of the “losing” block containing
it at least doubles. After each merge, scaling factors of the “losing” block are computed with respect to
the new representative. Again, we only recompute the scaling factor of each state at most logn times.
Hence the small modifications compared to [19] do not increase the asymptotic run-time of Algorithm 2,
which is O(n logn) where n is the number of states (see Theorem 9 in [19]). Alternatively, we can use
the standard reduction to a weighted finite-state automaton using each transition context c ∈Cδ as a new
symbol.

A. Maletti and D. Quernheim 11

Algorithm 3 Merging almost-equivalent states.
Require: a minimal DWTA A , its kernel states K, its almost-equivalence≈, and a scaling map f : Q→ S
Return: hyper-minimal DWTA A that is almost-equivalent to the input DWTA

for all B ∈ (Q/≈) do
2: select q ∈ B such that q ∈ K if possible

for all q′ ∈ B−K do

4: A ←mergeA (q′
f (q′)
f (q)−→ q)

Proposition 13. Algorithm 2 can be implemented to run in time O(m logn), where m = |Σ(Q)| and
n = |Q|.

Finally, we need an adjusted merging process that takes the scaling factors into account. When
merging one state into another, their mutual scaling factor can be computed from the scaling map by
multiplicaton of one scaling factor with the inverse of the other. Therefore, merging (see Algorithm 3)
can be implemented in time O(n), and hyper-minimization (Algorithm 1) can be implemented in time
O(m logn) in the weighted setting.

Proposition 14. Our hyper-minimization algorithm can be implemented to run in time O(m logn).

It remains to prove the correctness of our algorithm. To prove the correctness of Algorithm 2, we
still need a technical property.

Lemma 15. Let q,q′ ∈Q be states with q 6= q′ but Sig(q) = Sig(q′). Moreover, let B = mergeA (q′ s→ q)
with s = f (q′)

f (q) , and let ∼= be its almost-equivalence (restricted to P). Then ∼= = ≈∩ (P× P) where
P = Q−{q′}.

Proof. Let p1 ≈ p2 with p1, p2 ∈ P. Let c = c`[c`−1[· · · [c1] · · ·]] with c1, . . . ,c` ∈Cδ . Then we obtain the
runs

Rp1 = 〈δ (c1[p1]),δ (c2[c1[p1]]), · · · ,δ (c[p1])〉 with weight wt(c[p1])

Rp2 = 〈δ (c1[p2]),δ (c2[c1[p2]]), · · · ,δ (c[p2])〉 with weight wt(c[p2]).

The corresponding runs R′p1
and R′p2

in B replace every occurrence of q′ in both Rp1 and Rp2 by q. Their
weights are

wt′(c[p1]) =

{
wt(c[p1]) if δ (c[p1]) 6= q′

wt(c[p1]) · s otherwise

wt′(c[p2]) =

{
wt(c[p2]) if δ (c[p2]) 6= q′

wt(c[p2]) · s otherwise.

Since δ (c′[p1]) = δ (c′[p2]) for suitably tall contexts c′ ∈CΣ and p1 ≈ p2, we obtain that p1 ∼= p2. The
same reasoning can be used to prove the converse.

Theorem 16. Algorithm 2 computes ≈ and a scaling map.

Proof sketch. If there exist different, but almost-equivalent states, then there exist different states with
the same standardized signature by Lemma 12. Lemma 11 shows that such states are almost-equivalent.

12 Hyper-minimization for deterministic weighted tree automata

Finally, Lemma 15 shows that we can continue the computation of the almost-equivalence after a
weighted merge of such states. The correctness of the scaling map is shown implicitly in the proof
of Lemma 11.

Theorem 17. We can hyper-minimize DWTA in time O(m logn), where m = |Σ(Q)| and n = |Q|.

References

[1] Andrew Badr (2008): Hyper-Minimization in O(n2). In: Proc. 13th CIAA, LNCS 5148, Springer, pp. 223–
231, doi:10.1007/978-3-540-70844-5_23.

[2] Andrew Badr (2009): Hyper-Minimization in O(n2). Int. J. Found. Comput. Sci. 20(4), pp. 735–746,
doi:10.1142/S012905410900684X.

[3] Andrew Badr, Viliam Geffert & Ian Shipman (2009): Hyper-minimizing minimized deterministic finite state
automata. RAIRO Theor. Inf. Appl. 43(1), pp. 69–94, doi:10.1051/ita:2007061.

[4] Jean Berstel & Christophe Reutenauer (1982): Recognizable Formal Power Series on Trees. Theor. Comput.
Sci. 18(2), pp. 115–148, doi:10.1016/0304-3975(82)90019-6.

[5] Björn Borchardt (2003): The Myhill-Nerode Theorem for Recognizable Tree Series. In: Proc. 7th DLT, LNCS
2710, Springer, pp. 146–158, doi:10.1007/3-540-45007-6_11.

[6] Björn Borchardt (2005): The Theory of Recognizable Tree Series. Ph.D. thesis, Technische Universität
Dresden.

[7] Walter S. Brainerd (1968): The Minimalization of Tree Automata. Information and Control 13(5), pp. 484–
491, doi:10.1016/S0019-9958(68)90917-0.

[8] Cezar Câmpeanu, Nicolae Santean & Sheng Yu (2001): Minimal cover-automata for finite languages. Theor.
Comput. Sci. 267(1–2), pp. 3–16, doi:10.1016/S0304-3975(00)00292-9.

[9] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans Rohnert &
Robert Endre Tarjan (1994): Dynamic Perfect Hashing: Upper and Lower Bounds. SIAM J. Comput. 23(4),
pp. 738–761, doi:10.1137/S0097539791194094.

[10] Jason Eisner (2003): Simpler and More General Minimization for Weighted Finite-State Automata. In: Proc.
HLT-NAACL, The The Association for Computational Linguistics, pp. 64–71.

[11] Zoltán Fülöp & Heiko Vogler (2009): Weighted tree automata and tree transducers. In Manfred Droste,
Werner Kuich & Heiko Vogler, editors: Handbook of Weighted Automata, chapter IX, EATCS Monographs
on Theoret. Comput. Sci., Springer, pp. 313–403, doi:10.1007/978-3-642-01492-5_9.

[12] Paweł Gawrychowski & Artur Jeż (2009): Hyper-minimisation Made Efficient. In: Proc. 34th MFCS, LNCS
5734, Springer, pp. 356–368, doi:10.1007/978-3-642-03816-7_31.

[13] Ferenc Gécseg & Magnus Steinby (1984): Tree Automata. Akadémiai Kiadó, Budapest.

[14] Ferenc Gécseg & Magnus Steinby (1997): Tree Languages. In Grzegorz Rozenberg & Arto Salomaa, editors:
Handbook of Formal Languages, chapter 1, 3, Springer, pp. 1–68, doi:10.1007/978-3-642-59126-6_1.

[15] Jonathan S. Golan (1999): Semirings and their Applications. Kluwer Academic, Dordrecht, doi:10.1007/978-
94-015-9333-5.

[16] David Gries (1973): Describing an Algorithm by Hopcroft. Acta Inform. 2(2), pp. 97–109,
doi:10.1007/BF00264025.

[17] Udo Hebisch & Hanns J. Weinert (1998): Semirings — Algebraic Theory and Applications in Computer
Science. World Scientific, doi:10.1142/9789812815965_0001.

[18] Johanna Högberg, Andreas Maletti & Jonathan May (2009): Backward and Forward Bisimulation Minimiza-
tion of Tree Automata. Theor. Comput. Sci. 410(37), pp. 3539–3552, doi:10.1016/j.tcs.2009.03.022.

http://dx.doi.org/10.1007/978-3-540-70844-5_23
http://dx.doi.org/10.1142/S012905410900684X
http://dx.doi.org/10.1051/ita:2007061
http://dx.doi.org/10.1016/0304-3975(82)90019-6
http://dx.doi.org/10.1007/3-540-45007-6_11
http://dx.doi.org/10.1016/S0019-9958(68)90917-0
http://dx.doi.org/10.1016/S0304-3975(00)00292-9
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1007/978-3-642-01492-5_9
http://dx.doi.org/10.1007/978-3-642-03816-7_31
http://dx.doi.org/10.1007/978-3-642-59126-6_1
http://dx.doi.org/10.1007/978-94-015-9333-5
http://dx.doi.org/10.1007/978-94-015-9333-5
http://dx.doi.org/10.1007/BF00264025
http://dx.doi.org/10.1142/9789812815965_0001
http://dx.doi.org/10.1016/j.tcs.2009.03.022

A. Maletti and D. Quernheim 13

[19] Markus Holzer & Andreas Maletti (2010): An n logn Algorithm for Hyper-Minimizing a (Minimized) Deter-
ministic Automaton. Theor. Comput. Sci. 411(38–39), pp. 3404–3413, doi:10.1016/j.tcs.2010.05.029.

[20] John E. Hopcroft (1971): An nlogn Algorithm for Minimizing States in a Finite Automaton. In: Theory of
Machines and Computations, Academic Press, pp. 189–196.

[21] Artur Jeż & Andreas Maletti (2013): Hyper-minimization for deterministic tree automata. Int. J. Found.
Comput. Sci. 24(6), pp. 815–830, doi:10.1142/S0129054113400200.

[22] Dexter Kozen (1992): On the Myhill-Nerode theorem for trees. Bulletin of the EATCS 47, pp. 170–173.
[23] Werner Kuich (1998): Formal Power Series over Trees. In: Proc. 3rd DLT, Aristotle University of Thessa-

loniki, pp. 61–101.
[24] Andreas Maletti & Daniel Quernheim (2011): Hyper-minimisation of deterministic weighted finite automata

over semifields. In: Proc. 13th AFL, Nyíregyháza College, pp. 285–299.
[25] Andreas Maletti & Daniel Quernheim (2011): Pushing for Weighted Tree Automata. In: Proc. 36th MFCS,

LNCS 6907, Springer, pp. 460–471, doi:10.1007/978-3-642-22993-0_42.
[26] Mehryar Mohri (1997): Finite-State Transducers in Language and Speech Processing. Comput. Linguist.

23(2), pp. 269–311.
[27] Slav Petrov, Leon Barrett, Romain Thibaux & Dan Klein (2006): Learning Accurate, Compact, and Inter-

pretable Tree Annotation. In: Proc. 44th ACL, The Association for Computational Linguistics, pp. 433–440,
doi:10.3115/1220175.1220230.

[28] Daniel Quernheim (2010): Hyper-minimisation of weighted finite automata. Master’s thesis, Institut für
Linguistik, Universität Potsdam.

[29] Robert Endre Tarjan (1972): Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), pp.
146–160, doi:10.1137/0201010.

[30] Antti Valmari & Petri Lehtinen (2008): Efficient Minimization of DFAs with Partial Transition Functions. In:
Proc. 25th STACS, LIPIcs 1, Schloss Dagstuhl — Leibniz-Zentrum für Informatik, Germany, pp. 645–656,
doi:10.4230/LIPIcs.STACS.2008.1328.

http://dx.doi.org/10.1016/j.tcs.2010.05.029
http://dx.doi.org/10.1142/S0129054113400200
http://dx.doi.org/10.1007/978-3-642-22993-0_42
http://dx.doi.org/10.3115/1220175.1220230
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.4230/LIPIcs.STACS.2008.1328

	Introduction
	Preliminaries
	A characterization of hyper-minimality
	Hyper-minimization

