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Abstract

This paper looks at the variability of pitch accent realisa-
tions on different word types in relation to the relative frequency
with which each word type occurs with a particular pitch accent
type (among all pitch-accented occurrences of the word). Re-
sults indicate that pitch accent realisation variability decreases
with increasing relative frequency. This is consistent with Ex-
emplar Theory: relative frequency can be regarded as an encod-
ing of the diversity of prosodic contexts in which a word oc-
curs. If there is less prosodic variability among stored tokens of
a word, there will be less variability in production. It seems that
pitch contours are stored with words, contrary to the standard
assumption that accenting is “post-lexical” in English.

Index Terms: exemplar theory, pitch accents, intonation

1. Introduction

It is well established that frequency of usage affects linguistic
realisation across a variety of domains [1, 2]. These findings
can be well explained within the framework of Exemplar The-
ory [3, 4, 1] (c.f. section 2), where it is assumed that language
input is stored in memory in rich detail as exemplars and that
targets for subsequent productions are derived from them. Fre-
quency effects are assumed to result from different numbers of
stored exemplars. In the domain of prosody, the variability of
syllable duration [5, 6] and pitch accents [7] has been found to
be subject to frequency effects: The duration of frequent syl-
lables is less easy to predict from the length of the underlying
phones than it is for the case for infrequent syllables [5, 6]; and
the shape of frequent pitch accents is more variable than the
shape of infrequent ones [7]. Moreover, it has been argued that
intonation contours can be stored with lexical items [8].

If pitch accent shapes are stored, this should influence pro-
duction and it would be expected that pitch accent shape on a
specific word type is affected by the diversity of (prosodic) con-
texts in which that type occurs (e.g. pitch accent type, informa-
tion status as well as phonological context). It is assumed here
that the diversity of contexts in which a specific word occurs is
reflected by the diversity of pitch accent types associated with
it and that this can be measured by the relative frequencies of
the pitch accent types on the word, i.e. the proportion of times a
word occurs with a given pitch accent type. The idea behind this
is that for words that appear in diverse contexts (i.e.word-accent
pairs of low relative frequency) exemplars from a greater num-
ber of competing contexts are activated in production. There-
fore, greater variability of the resulting Fo-contours is expected.
That is, while high absolute frequency increases the variability
of the Fo-contours [7], we expect high relative frequency to de-

crease the variability since it reflects low diversity of contexts.

The research presented in this paper specifically targets this
claim. In particular, we address the following questions:

1. Does the relative frequency of a word-accent pair affect
the realisation of the pitch accent?

2. If so, what is the impact of relative frequency on a set of
word-accent pairs?

3. What conclusions can be drawn for theories of lexical
storage and post-lexical accenting?

In examining the variability of pitch accent tokens in
a speech corpus (section 3), a parametric intonation model,
known as PaIntE ([9], cf. section 4), is employed to extract
meaningful parameters from pitch-accented words of varying
relative frequency in a speech corpus. Variability of pitch-
accented word types is measured using Euclidean distance (sec-
tion 5). Linear regression models assess the relationship be-
tween relative frequency and variability (section 6). Results are
interpreted from a usage-based perspective (section 7).

2. Exemplar Theory

Exemplar Theory is concerned with the idea that language is
acquired by repeated exposure to concrete language input, and
it has successfully accounted for a number of language phe-
nomena, including diachronic language change and frequency
of occurrence effects and grammaticalisation [2], syllable du-
ration variability [5, 6], entrenchment and lenition [1], among
others. Central to Exemplar Theory are the notions of exem-
plar storage, frequency of occurrence, recency of occurrence,
and similarity. There is an increasing body of evidence which
indicates that significant storage of language input exemplars,
rich in detail, takes place in memory [10, 11]. These stored ex-
emplars are then employed in the categorisation of new input
percepts. Similarly, production is facilitated by accessing these
stored exemplars as production targets. Computational models
of the exemplar memory also argue that it is in a constant state
of flux with new inputs updating it and old unused exemplars
gradually fading away [1].

Up to now, little exemplar-theoretic research has examined
pitch accent prosody (but see [12] for memory-based prediction
of pitch accents and prosodic boundaries, [8] for evidence of
word storage with intonation contours, and [7] for evidence of
frequency effects on within-type pitch accent variability) and to
the authors’ knowledge this paper represents the first attempt,
from a usage-based perspective, to examine the relationship be-
tween the diversity of prosodic contexts in which a word occurs



and the variability of realisations of one specific pitch accent
type.

3. Data

The corpus used in this study is the Boston Radio News Cor-
pus, a collection of radio news broadcasts [13]. A subset of
the corpus has been labelled prosodically using ToBI [14]. The
analysed data set contains approximately 1 h of speech from
five professional speakers (3 female, 2 male). One speaker pro-
duced nearly half the tokens in our data set; however, as tokens
from her were fairly evenly spread across the frequency bins
(see below), we believe this did not unduly influence results.

For each nuclear H* and L+H* accent (as well as the down-
stepped versions of these accents), four parameters reflecting
its shape were extracted using a parametric intonation model
(PalntE, [9], see section 4). Outlying tokens, i.e. tokens where
one or more of the dimension values fell within the upper or
lower 2.5 percentile of the dimension’s range, were removed.
As the purpose of the study was to examine the variability be-
tween tokens of a word-accent pair, types with only one occur-
rence were not analysed so that the nuclear H* dataset (referred
to as HN) finally comprises 1425 tokens and 465 types, the nu-
clear L+H* set LHN 306 tokens (123 types).

For each word type, the frequency of the combination of
this word type with either H* or L+H* was calculated as was the
frequency of how often the word occurred with any pitch accent.
The ratio of these two values measures the relative frequency of
the word-accent-pair:
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where h(w,) is the relative frequency of word w and ac-
cent a. n(w,) is the absolute frequency of the combination of
these two, and acc is the set of accent types, hence n(ws ) corre-
sponds to the absolute frequency with which the w occurs with
any pitch accent. It is assumed here that this value reflects the
diversity of the prosodic context in which the word occurs. The
higher the proportion of contexts with a different pitch accent,
the lower the relative frequency of the particular accent on this
word. The word “school” for instance, occurred 19 times with
a pitch accent, in eight of these occurrences the accent has been
labelled as H*. Thus, the relative frequency of the word-accent
pair “school-H*” is h(schooln.) = & ~ 0.421.

The frequency distribution of the word-accent pairs is a typ-
ical LNRE-distribution (large number of rare events), where few
types occur often and many types occur rarely. Due to this fact,
the datasets are highly unbalanced: Firstly, the number of to-
kens that are analysed per type varies. Secondly, splitting the
data into frequency bins, i.e. grouping types with the same num-
ber of tokens together in one bin, reveals that the number of
types per frequency bin varies, as well. Therefore several data
reductions have been carried out with to balance the data.

In the first reduction, those types were excluded that were
the only ones occurring within a certain frequency bin. The
datasets that are modified in such a way are referred to as HN-
mod and LHNmod in the following.

In a second step, a balanced dataset for nuclear H* (HN-
bal) was created, where some of the low frequency types (two
or three tokens) were randomly excluded so that the number
of low frequency types and higher frequency types (4 or more
tokens) was the same. This was done to prevent the many low-
frequency tokens from outweighing effects of the fewer tokens

with higher frequency. The statistical analysis for the random
set was validated in a 100-fold cross-validation. For L+H* no
such analysis could be carried out, since this set would have
consisted of only 32 types, and would thus have lacked suffi-
cient statistical explanatory power.

The last data reduction equals the number of tokens that
are analysed per type as well as the number of types that are
analysed per frequency bin. Two tokens per type were randomly
selected, as were 10 types per frequency bin. This reduced the
data to only 196 types (and 392 tokens). Only types from the
frequency bin 2-6 went into the analysis, since there were not
enough types in the higher frequency bins. The analyses carried
out on this drastically reduced random dataset (referred to as
HNequ) were repeated 1000 times.

4. Determination of pitch accent shape

A parametric intonation model, known as PalntE [9], was em-
ployed to represent pitch accent shape using a small number of
linguistically meaningful parameters. The model approximates
stretches of Fyg by employing a phonetically motivated model
function [9]. This function operates on a three-syllable-window,
i.e. the span of the accented syllable and the syllables adjacent
to it, if they are in the same intonation phrase. The function is
composed by addition of two sigmoids (rising and falling) with
a fixed time delay which is selected so that the peak does not
fall below 96% of the function’s range.

Six parameters, illustrated in figure 1, are used to describe
the contour: parameter b locates the peak of the accent within
the three-syllable window, parameters ¢/ and c2 model the
ranges of the rising and falling slope of the accent’s contour,
d corresponds to the actual height of the peak and parameters
al and a2 (not displayed in the figure) denote the “amplitude-
normalised” steepness of the rising and falling slope [15].

Four of the PaIntE parameters were employed in the analy-
ses: parameters ¢/ and c2 to determine the ranges of an accent’s
falling or rising slope, respectively, b to analyse the accents’
temporal alignment and d to measure the height of the accent’s
peak. The a parameters were excluded from the analysis be-
cause in cases where only one sigmoid is used, the a value of
the other sigmoid is meaningless, since there is no slope, and
would interfere with the analysis. For ¢ parameters, this is not
the case, because the value for the sigmoid that is not used, is
set to 0 which reflects the actual properties of the accent. To
normalise for speaker differences the PalntE parameters were
z-scored for each speaker separately.

5. Calculation of pitch accent variability

To calculate a measure of variability, each of the accent tokens
was represented as a 4-dimensional vector (one dimension for
each z-scored PalntE parameter). For a given word type and a
given accent, the average distance between the tokens of a word-
accent pair in the 4-dimensional space was calculated. This was
done by calculating a centroid (i.e. a vector composed by the
mean value of each dimension) and then calculating the Eu-
clidean distance d between the centroid Z and z;:

@

The average distance of all tokens of a type to their centroid
gives a measure of the variability of the type. For example, in
the case of the word “school” in the HN dataset, the centroid
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Figure 1: The PaIntE model function is the sum of a rising and
a falling sigmoid with a fixed time delay. The time axis is nor-
malised to the syllables’ lengths. The parameters are calculated
over the span of the accented syllable (starred) and its immedi-
ate neighbours (if the accented syllable is not followed/preceded
by an intonation phrase break).

Dataset HN | LHN |HNmod|LHNmod|HNbal|HNequ

p-value < 0.01{<0.05|< 0.01] <0.05
coefficient [-0.2967|-0.3804(-0.2901| -0.3637
std. error  |0.0918 [0.1591]0.0922 | 0.1591

repetitions 100 | 1000
significance 9% | T%
tendency 7% | 5%

Table 1: Overview of the significance of the linear regression
models for the tested datasets. For datasets that were created
by random selection of subsets of the data, the number of rep-
etitions is given as well as the proportion of significant cases
(oo = 0.05) and of cases that showed a tendency (p < 0.08).

represents eight instances of “school-H*”, and the average dis-
tance of the eight instances to this centroid is interpreted as the
variability value for the type “school-H*”.

6. Results

Linear regression models were fitted to assess the relationship
between the relative frequency of a word-accent pair and the
variability of the tokens of this type(there were no other vari-
ables in the models). This was done for all the above mentioned
datasets (section 3). Table 1 gives an overview of the signifi-
cance of the models. For both analysed accent types, the regres-
sion models for the complete dataset (HN and LHN) yielded
a significant p-value indicating a correlation between the rel-
ative frequency of a word type occurring with the respective
accent and the variability among the tokens of this type. This
effect held also over the modified datasets HNmod and LHN-
mod where extremely frequent types, that were the only ones in
their frequency bin, were removed. Figure 2 illustrates the ef-
fect for HN, i.e. it depicts the variability of tokens of a word-H*
pair plotted against the relative frequency of this pair. Hence,
each point in the graph represents a type (e.g, “school — H*”).
The regression line illustrates a decrease of variability with in-
creasing relative frequency. The same effect can be observed
for L+H*: the greater the relative frequency of a word type and

3.0

o

25
|
o
o
oo
o
@

Average distance

Relative frequency

Figure 2: Relationship between the relative frequency of word-
H* pairs and the variability among the tokens of each of the

types.

L+H*, the lower the variability of L+H* tokens of this type.
This is shown for LHN in figure 3.

For H*, where it was possible to balance the dataset and
still keep a reasonable number of tokens, the random selection
of a smaller number of low-frequency types and the subsequent
calculation of the model was done 100 times. It yielded sig-
nificance in 79 of 100 repetitions. In all the significant cases,
variability of the types decreased with increasing relative fre-
quency.

For the fully equalized set, however, the effect did not seem
to hold. Since the selection of a subset of the original dataset in-
volved two randomisation processes, the number of repetitions
was increased to 1000 repetitions. The regression model was
significant in only 66 cases; though in those cases the effect
was the same (decreasing variability for increasing relative fre-
quency). However, this dataset is reduced drastically, compared
to the original set (cf. section 3). While the original AN dataset
comprises 1425 tokens of 465 types with tokens ranging in their
frequency between two and 58 (though only one type is as fre-
quent as this), the reduced dataset HNequ consists only of 196
types and only two instances of each type went into the analy-
sis. Moreover, the types ranged in their frequency only between
two and six, i.e. the higher frequency types were not analysed.
It is therefore debatable, whether such a drastic reduction of the
data still represents the original dataset in an appropriate way.

7. Discussion and Outlook

The analyses described above indicate a relationship between
the relative frequency with which a word occurs with a certain
pitch accent and the variability of the realisations of this accent.
The greater the relative frequency of a word-accent pair, the less
variable are the realisations of the accent.

Such an effect presents a challenge for traditional, autoseg-
mental theories of intonation. These theories are in general
silent on the effect of frequency on pitch accent type and re-
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Figure 3: Relationship between the relative frequency of word-
L+H* pairs and the variability among the tokens of each of the

types.

alisation. However, once a particular accent type has been as-
signed to a given word, it is assumed that the realisation of the
pitch contour on that word is related purely to the phonologi-
cal context, e.g. the position in the phrase and how near other
accents are [16]. While these factors are undoubtedly still rele-
vant, our results seem to show that accent-word frequency also
plays a part in explaining pitch contour variation. Along with
our previous results (see section 1), these findings suggest that
pitch contour realisation cannot be considered to be purely a
“post-lexical” process in English.

An exemplar-theoretic view of pitch accenting, on the other
hand, expects word-based storage of accent contours, and re-
sultant frequency effects. An exemplar-theoretic explanation
for this phenomenon is as follows: In production, exemplars
of the target word are activated. If more of these exemplars
come from different contexts (e.g. are accented with pitch ac-
cents other than the intended one), the Fo-shapes from which
the production target is derived will be more variable, because
they include not only realisations with the intended accent but
also realisations with competing pitch accents.

The competing realisations are expected to cause “noise”
in the production of the intended accent. Hence, the larger the
proportion of competing pitch accents, the greater the variabil-
ity among the realisations of the target accent. In other words,
accent-word pairs with a small relative frequency (more com-
petitors) are expected to be more variable than accent-word
pairs with a high relative frequency (less competitors).

For word types that have a high relative frequency with one
accent type, this result is consistent with the proposal in [8] that
certain words have “fixed” intonation, linked to specific prag-
matic meanings of that word, e.g. discourse expressions like
“really”.

Our analyses demonstrate an effect of relative frequency
on the realisation of pitch accents. However it is possible that
the changes in variability result from an imbalance in dataset
in terms of number of tokens and types. To rule this out, we

would need to repeat the analysis on a much larger dataset. Un-
fortunately, we are not aware of a substantially larger corpus
annotated for accent type. However, in the future we are look-
ing to adapt our methodology for larger available corpora which
have some prosodic annotation (not including accent type).
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